Skip to main content
Log in

Identification and quantitation of JWH-213, a cannabimimetic indole, as a designer drug in a herbal product

  • Short Communication
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

In our survey of designer drugs in the Japanese market, a cannabimimetic indole was identified as a new active compound in a herbal product. The structure of this compound was elucidated by liquid chromatography–photodiode array–mass spectrometry (LC–PDA–MS), gas chromatography–mass spectrometry (GC–MS), high-resolution MS, and nuclear magnetic resonance (NMR) analyses. The compound was finally identified as (4-ethyl-1-naphthalenyl)(2-methyl-1-pentyl-1H-indol-3-yl)methanone (JWH-213), an indole-based cannabinoid receptor ligand. To our knowledge, this is the first finding of JWH-213 as a designer drug in a herbal product. The quantitative LC–PDA analysis showed that the JWH-213 content in the product was 252 mg/pack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Takahashi M, Nagashima M, Suzuki J, Seto T, Yasuda I, Yoshida T (2008) Analysis of phenethylamines and tryptamines in designer drugs using gas chromatography–mass spectrometry. J Health Sci 54:89–96

    Article  CAS  Google Scholar 

  2. Uchiyama N, Kikura-Hanajiri R, Kawahara N, Haishima Y, Goda Y (2009) Identification of a cannabinoid analog as a new type of designer drug in a herbal product. Chem Pharm Bull 57:439–441

    Article  PubMed  CAS  Google Scholar 

  3. Uchiyama M, Kikura-Hanajiri R, Kawahara N, Goda Y (2009) Identification of a cannabimimetic indole as a designer drug in a herbal product. Forensic Toxicol 27:61–66

    Article  CAS  Google Scholar 

  4. Uchiyama N, Miyazawa N, Kawamura M, Kikura-Hanajiri R, Goda Y (2010) Analysis of newly distributed designer drugs detected in the products purchased in fiscal year 2008. Yakugaku Zasshi 130:263–270

    Article  PubMed  CAS  Google Scholar 

  5. Uchiyama N, Kikura-Hanajiri R, Ogata J, Goda Y (2010) Chemical analysis of synthetic cannabinoids as designer drugs in herbal products. Forensic Sci Int 198:31–38

    Article  PubMed  CAS  Google Scholar 

  6. Dresen S, Ferreirós N, Pütz M, Westphal F, Zimmermann R, Auwärter V (2010) Monitoring of herbal mixtures potentially containing synthetic cannabinoids as psychoactive compounds. J Mass Spectrom 45:1186–1194

    Article  PubMed  CAS  Google Scholar 

  7. Brandt SD, Freeman S, Sumnall HR, Measham F, Cole J (2010) Analysis of NRG ‘legal highs’ in the UK: identification and formation of novel cathinones. Drug Test Anal 3:569–575

    Article  PubMed  Google Scholar 

  8. Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2011) Identification and quantitation of two cannabimimetic phenylacetylindoles JWH-251 and JWH-250, and four cannabimimetic naphthoylindoles JWH-081, JWH-015, JWH-200, and JWH-073 as designer drugs in illegal products. Forensic Toxicol 29:25–37

    Article  CAS  Google Scholar 

  9. Nakajima J, Takahashi M, Seto T, Suzuki J (2011) Identification and quantitation of cannabimimetic compound JWH-250 as an adulterant in products obtained via the Internet. Forensic Toxicol 29:51–55

    Article  CAS  Google Scholar 

  10. Hudson S, Ramsey J (2010) The emergence and analysis of synthetic cannabinoids. Drug Test Anal 3:466–478

    Article  Google Scholar 

  11. Ernst L, Schiebel HM, Theuring C, Lindigkeit R, Beuerle T (2011) Identification and characterization of JWH-122 used as new ingredient in “Spice-like” herbal incenses. Forensic Sci Int 208:31–35

    Article  Google Scholar 

  12. EMCDDA (2012) EMCDDA-Europol 2011 annual report on the implementation of council decision 2005/387/JHA. EMCDDA-Europol, Lisbon, May 2012. http://www.emcdda.europa.eu/attachements.cfm/att_155113_EN_EMCDDA-Europol%20Annual%20Report%202011_2012_final.pdf. Accessed Dec 2011

  13. United Nations Office on Drugs and Crime (UNODC) (2011) Synthetic cannabinoids in herbal products. http://www.unodc.org/documents/scientific/Synthetic_Cannabinoids.pdf. Accessed May 2011

  14. Nakajima J, Takahashi M, Seto T, Kanai C, Suzuki J, Yoshida M, Hamano T (2011) Identification and quantitation of two benzoylindoles AM-694 and (4-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone, and three cannabimimetic naphthoylindoles JWH-210, JWH-122 and JWH-019 as adulterants in illegal products obtained via the Internet. Forensic Toxicol 29:95–110

    Article  CAS  Google Scholar 

  15. Nakajima J, Takahashi M, Nonaka R, Seto T, Suzuki J, Yoshida M, Kanai C, Hamano T (2011) Identification and quantitation of a benzoylindole (2-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone, and a naphthoylindole 1-(5-fluoropentyl-1H-indol-3-yl)-(naphthalene-1-yl)methanone (AM-2201) found in illegal products obtained via the Internet and their cannabimimetic effects evaluated by in vitro [35S]GTPγS binding assays. Forensic Toxicol 29:132–141

    Article  CAS  Google Scholar 

  16. Uchiyama N, Kikura-Hanajiri R, Goda Y (2011) Identification of a novel cannabimimetic phenylacetylindole, cannabipiperidiethanone, as a designer drug in a herbal product and its affinity for cannabinoid CB1 and CB2 receptors. Chem Pharm Bull 59:1203–1205

    Article  PubMed  CAS  Google Scholar 

  17. Khreit OI, Irving C, Schmidt E, Parkinson JA, Nic Daeid N, Sutcliffe OB (2012) Synthesis, full chemical characterisation and development of validated methods for the quantification of the components found in the evolved “legal high” NRG-2. J Pharm Biomed Anal 61:122–135

    Article  PubMed  CAS  Google Scholar 

  18. Kneisel S, Westphal F, Bisel P, Brecht V, Broecker S, Auwärter V (2012) Identification and structural characterization of the synthetic cannabinoid 3-(1-adamantoyl)-1-pentylindole as an additive in ‘herbal incense’. J Mass Spectrom 47:195–200

    Article  PubMed  CAS  Google Scholar 

  19. Nakajima J, Takahashi M, Seto T, Yoshida M, Kanai C, Suzuki J, Hamano T (2012) Identification and quantitation of two new naphthoylindole drugs-of-abuse, (1-(5-hydroxypentyl)-1H-indol-3-yl)(naphthalene-1-yl)methanone (AM-2202), and (1-(4-pentenyl)-1H-indol-3yl)(naphthalen-1-yl)methanone, with other synthetic cannabinoids in unregulated “herbal” products circulated in the Tokyo area. Forensic Toxicol 30:33–44

    Article  CAS  Google Scholar 

  20. Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2012) Identification of two new-type synthetic cannabinoids, N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA), and detection of five synthetic cannabinoids, AM-1220, AM-2233, AM-1241, CB-13 (CRA-13), and AM-1248, as designer drugs in illegal products. Forensic Toxicol 30:114–125

    Article  CAS  Google Scholar 

  21. Huffman JW, Zengin G, Wu MJ, Lu J, Hynd G, Bushell K, Thompson AL, Bushell S, Tartal C, Hurst DP, Reggio PH, Selley DE, Cassidy MP, Wiley JL, Martin BR (2005) Structure–activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid CB1 and CB2 receptors: steric and electronic effects of naphthoyl substituents. New highly selective CB2 receptor agonists. Bioorg Med Chem 13:89–112

    Article  PubMed  CAS  Google Scholar 

  22. Järbe TU, Deng H, Vadivel SK, Makriyannis A (2011) Cannabinergic aminoalkylindoles, including AM678 = JWH018 found in Spice, examined using drug (Δ9-tetrahydrocannabinol) discrimination for rats. Behav Pharmacol 22:498–507

    Article  PubMed  Google Scholar 

  23. Aung MM, Griffin G, Huffman JW, Wu M, Keel C, Yang B, Showalter VM, Abood ME, Martin BR (2000) Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB(1) and CB(2) receptor binding. Drug Alcohol Depend 60:133–140

    Article  PubMed  CAS  Google Scholar 

  24. Deng H, Gifford AN, Zvonok AM, Cui G, Li X, Fan P, Deschamps JR, Flippen-Anderson JL, Gatley SJ, Makriyannis A (2005) Potent cannabinergic indole analogues as radioiodinatable brain imaging agents for the CB1 cannabinoid receptor. J Med Chem 48:6386–6392

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunaga Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, K., Uchiyama, N., Fukiwake, T. et al. Identification and quantitation of JWH-213, a cannabimimetic indole, as a designer drug in a herbal product. Forensic Toxicol 31, 145–150 (2013). https://doi.org/10.1007/s11419-012-0161-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-012-0161-6

Keywords

Navigation