Skip to main content
Log in

Rapid and sensitive quantification of paraquat and diquat in human serum by liquid chromatography/time-of-flight mass spectrometry using atmospheric pressure photoionization

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

We developed a rapid and sensitive liquid chromatography/time-of-flight mass spectrometry (LC/TOF–MS) method using atmospheric pressure photoionization (APPI) for the determination of paraquat and diquat in human serum. Serum samples were extracted with aqueous formic acid and acetonitrile. After vortexing and centrifugation, the supernatants were filtered with ultrafiltration cartridges followed by APPI-LC/TOF–MS analysis using a hydrophilic interaction chromatography analytical column. The total amount of time required for analyzing serum samples was ≤20 min. Calibration curves using solvent standards were linear in the range of 0.0005–1.25 μg/ml. The intraday recoveries (n = 6) for paraquat and diquat added to human serum at 0.1 μg/ml were 99.0 and 91.9 %, respectively, with relative standard deviations of 5.8 and 6.5 %. The limits of detection calculated at a signal-to-noise ratio of 3 were 0.005 μg/ml for paraquat and 0.006 μg/ml for diquat. This method was applied in the analysis of four autopsy cases involving suspected paraquat intoxications. The concentration of paraquat and diquat in serum ranged from <0.005 to 72 μg/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tomlin CDS (2003) The pesticide manual, 13th edn. British Crop Protection Council, Hampshire

  2. Tsunenari S, Yonemitsu K, Uchimura Y, Kanda M (1981) The influence of putrefactive changes on the determination of paraquat in autopsy materials. Forensic Sci Int 17:51–56

    Article  PubMed  CAS  Google Scholar 

  3. Nagami H, Nishigaki Y, Matsushima S, Yajima N (2007) Paraquat poisoning in Japan: a hospital-based survey. J Rural Med 2:85–92

    Article  Google Scholar 

  4. Fuke C, Ameno K, Ameno S, Kiriu T, Shinohara T, Sogo K, Ijiri I (1992) A rapid, simultaneous determination of paraquat and diquat in serum and urine using second-derivative spectroscopy. J Anal Toxicol 16:214–216

    PubMed  CAS  Google Scholar 

  5. Kawase S, Kanno S, Ukai S (1984) Determination of the herbicides paraquat and diquat in blood and urine by gas chromatography. J Chromatogr 283:231–240

    Article  PubMed  CAS  Google Scholar 

  6. Draffan GH, Clare RA, Davies DL, Hawksworth G, Murray S, Davies DS (1977) Quantitative determination of the herbicide paraquat in human plasma by gas chromatographic and mass spectrometric methods. J Chromatogr 139:311–320

    Article  PubMed  CAS  Google Scholar 

  7. Almeida RM, Yonamine M (2007) Gas chromatographic–mass spectrometric method for the determination of the herbicides paraquat and diquat in plasma and urine samples. J Chromatogr B 853:260–264

    Article  Google Scholar 

  8. Posecion NC, Ostrea EM, Bielawski DM (2007) Quantitative determination of paraquat in meconium by sodium borohydride-nickel chloride chemical reduction and gas chromatography/mass spectrometry (GC/MS). J Chromatogr B 862:93–99

    Article  Google Scholar 

  9. Ito S, Nagata T, Kudo K, Kimura K, Imamura T (1993) Simultaneous determination of paraquat and diquat in human tissues by high-performance liquid chromatography. J Chromatogr 617:119–123

    Article  PubMed  CAS  Google Scholar 

  10. Fuke C, Arao T, Morinaga Y, Takaesu H, Ameno K, Miyazaki T (2002) Analysis of paraquat, diquat and two diquat metabolites in biological materials by high-performance liquid chromatography. Legal Med 4:156–163

    Article  PubMed  CAS  Google Scholar 

  11. Ito M, Hori Y, Fujisawa M, Oda A, Katsuyama S, Hirose Y, Yoshioka T (2005) Rapid analysis method for paraquat and diquat in the serum using ion-pair high-performance liquid chromatography. Biol Pharm Bull 28:725–728

    Article  PubMed  CAS  Google Scholar 

  12. Hara S, Sasaki N, Takase D, Shiotsuka S, Ogata K, Futagami K, Tamura K (2007) Rapid and sensitive HPLC method for the simultaneous determination of paraquat and diquat in human serum. Anal Sci 23:523–526

    Article  PubMed  CAS  Google Scholar 

  13. Blake DK, Gallagher RT, Woollen BH (2002) Improved methods for the analysis of paraquat in biological fluids. Chromatographia 55:S183–S185

    Article  CAS  Google Scholar 

  14. Lee XP, Kumazawa T, Fujishiro M, Hasegawa C, Arinobu T, Seno H, Ishii A, Sato K (2004) Determination of paraquat and diquat in human body fluids by high-performance liquid chromatography/tandem mass spectrometry. J Mass Spectrom 39:1147–1152

    Article  PubMed  CAS  Google Scholar 

  15. Ariffin MM, Anderson RA (2006) LC/MS/MS analysis of quaternary ammonium drugs and herbicides in whole blood. J Chromatogr B 842:91–97

    Article  CAS  Google Scholar 

  16. Wang KC, Chen SM, Hsu JF, Cheng SG, Lee CK (2008) Simultaneous detection and quantitation of highly water-soluble herbicides in serum using ion-pair liquid chromatography–tandem mass spectrometry. J Chromatogr B 876:211–218

    Article  CAS  Google Scholar 

  17. Tomita M, Okuyama T, Nigo Y (1992) Simultaneous determination of paraquat and diquat in serum using capillary electrophoresis. Biomed Chromatogr 6:91–94

    Article  PubMed  CAS  Google Scholar 

  18. Makihata N, Yamasaki T, Eiho J (2007) Determination of diquat in water samples by hydrophilic interaction chromatography/electrospray ionization/mass spectrometry coupled with solid-phase extraction using a stable isotope labeled compound. Bunseki Kagaku 56:579–585

    Article  CAS  Google Scholar 

  19. Whitehead RD Jr, Montesano MA, Jayatilaka NK, Buckley B, Winnik B, Needham LL, Barr DB (2010) Method for measurement of the quaternary amine compounds paraquat and diquat in human urine using high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr B 878:2548–2553

    Article  CAS  Google Scholar 

  20. Cai SS, Syage JA (2006) Comparison of atmospheric pressure photoionization, atmospheric pressure chemical ionization, and electrospray ionization mass spectrometry for analysis of lipids. Anal Chem 78:1191–1199

    Article  PubMed  CAS  Google Scholar 

  21. Straube EA, Dekant W, Völkel W (2004) Comparison of electrospray ionization, atmospheric pressure chemical ionization, and atmospheric pressure photoionization for the analysis of dinitropyrene and aminonitropyrene LC–MS/MS. J Am Soc Mass Spectrom 15:1853–1862

    Article  PubMed  CAS  Google Scholar 

  22. Lembcke J, Ceglarek U, Fiedler GM, Baumann S, Leichtle A, Thiery J (2005) Rapid quantification of free and esterified phytosterols in human serum using APPI-LC–MS/MS. J Lipid Res 46:21–26

    Article  PubMed  CAS  Google Scholar 

  23. Müller A, Mickel M, Geyer R, Ringseis R, Eder K, Steinhart H (2006) Identification of conjugated linoleic acid elongation and beta-oxidation products by coupled silver-ion HPLC APPI-MS. J Chromatogr B 837:147–152

    Article  Google Scholar 

  24. Cai Y, Kingery D, McConnell O, Bach AC 2nd (2005) Advantages of atmospheric pressure photoionization mass spectrometry in support of drug discovery. Rapid Commun Mass Spectrom 19:1717–1724

    Article  PubMed  CAS  Google Scholar 

  25. Takino M, Daishima S, Nakahara T (2003) Liquid chromatography/mass spectrometric determination of patulin in apple juice using atmospheric pressure photoionization. Rapid Commun Mass Spectrom 17:1965–1972

    Article  PubMed  CAS  Google Scholar 

  26. Yoshioka N, Akiyama Y, Teranishi K (2004) Rapid simultaneous determination of o-phenylphenol, diphenyl, thiabendazole, imazalil and its major metabolite in citrus fruits by liquid chromatography–mass spectrometry using atmospheric pressure photoionization. J Chromatogr A 1022:145–150

    Article  PubMed  CAS  Google Scholar 

  27. Yoshioka N, Asano M, Kuse A, Mitsuhashi T, Nagasaki Y, Ueno Y (2011) Rapid determination of glyphosate, glufosinate, bialaphos, and their major metabolites in serum by liquid chromatography-tandem mass spectrometry using hydrophilic interaction chromatography. J Chromatogr A 1218:3675–3680

    Article  PubMed  CAS  Google Scholar 

  28. van Nuijs AL, Tarcomnicu I, Covaci A (2011) Application of hydrophilic interaction chromatography for the analysis of polar contaminants in food and environmental samples. J Chromatogr A 1218:5964–5974

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Masahiko Takino and Dr. Hideaki Uchida of Agilent Technologies for helpful advice in setting LC/MS analytical conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Yoshioka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshioka, N., Asano, M., Kuse, A. et al. Rapid and sensitive quantification of paraquat and diquat in human serum by liquid chromatography/time-of-flight mass spectrometry using atmospheric pressure photoionization. Forensic Toxicol 30, 135–141 (2012). https://doi.org/10.1007/s11419-012-0138-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-012-0138-5

Keywords

Navigation