Skip to main content

Advertisement

Log in

Integrating network pharmacology and experimental models to identify notoginsenoside R1 ameliorates atherosclerosis by inhibiting macrophage NLRP3 inflammasome activation

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Atherosclerosis is a cardiovascular disease, accounting for the most common mortality cause worldwide. Notoginsenoside R1 (NGR1) is a characteristic saponin of Radix notoginseng that exhibits anti-inflammatory and antioxidant effects while modulating lipid metabolism. Evidence suggests that NGR1 exerts cardioprotective, neuroprotective, and anti-atherosclerosis effects. However, underlying NGR1 mechanisms alleviating atherosclerosis (AS) have not been examined. This study used a network pharmacology approach to construct the drug-target-disease correlation and protein–protein interaction (PPI) network of NGR1 and AS. Moreover, functional annotation and pathway enrichment analyses deciphered the critical biological processes and signaling pathways potentially regulated by NGR1. The protective effect of NGR1 against AS and the underlying mechanism(s) was assessed in an atherogenic apolipoprotein E-deficient (ApoE−/−) mice in vivo and an oxidized low-density lipoprotein (ox-LDL)-induced macrophage model in vitro. The network pharmacology and molecular docking analyses revealed that NGR1 protects against AS by targeting the NLRP3/caspase-1/IL-1β pathway. NGR1 reduced foam cell formation in ox-LDL-induced macrophages and decreased atherosclerotic lesion formation, serum lipid metabolism, and inflammatory cytokines in AS mice in vivo. Therefore, NGR1 downregulates the NLRP3 inflammasome complex gene expression of NLRP3, caspase-1, ASC, IL-1β, and IL-18, in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Abbreviations

ApoE / :

Apolipoprotein E-deficient;

AS:

Atherosclerosis;

BP:

Biological process;

CC:

Cellular component;

HDL-C:

High-density lipoprotein cholesterol;

H&E:

Hematoxylin–eosin;

HFD:

High-fat diet;

IL-1β:

Interleukin-1 beta;

IL-18:

Interleukin-18;

IL-6:

Interleukin-6;

LDL-C:

Low-density lipoprotein cholesterol;

MF:

Molecular function;

NGR1:

Notoginsenoside R1;

ox-LDL:

Oxidized low-density lipoprotein;

PFA:

Paraformaldehyde;

PPI:

Protein–protein interaction;

TC:

Cholesterol;

TG:

Triacylglycerides;

TNF-α:

Tumor necrosis factor-α

References

  1. Luca AC, David SG, David AG, Țarcă V, Pădureț IA, Mîndru DE, Roșu ST, Roșu EV, Adumitrăchioaiei H, Bernic J, Cojocaru E, Țarcă E (2023) Atherosclerosis from Newborn to Adult-Epidemiology, Pathological Aspects, and Risk Factors. Life (Basel) 13:2056

    CAS  PubMed  Google Scholar 

  2. Wolf MP, Hunziker P (2020) Atherosclerosis: Insights into Vascular Pathobiology and Outlook to Novel Treatments. Cardiovasc Transl Res 13:744–757

    Article  Google Scholar 

  3. Frostegård J (2023) Antibodies against Phosphorylcholine-Implications for Chronic Inflammatory Diseases. Metabolites 13:720

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zahra H, Fatemeh S, Bahman R, Amirhossein S, Aria M, Hamed M (2018) NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. Cell Physiol 233:2116–2132

    Article  Google Scholar 

  5. Xu W, Qian L, Yuan X, Lu Y (2022) MicroRNA-223-3p inhibits oxidized low-density lipoprotein-mediated NLRP3 inflammasome activation via directly targeting NLRP3 and FOXO3. Clin Hemorheol Microcirc 81:241–253

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Fang D, Yang Q, You J, Wang L, Wu J, Zeng M, Luo M (2023) Interactions between PCSK9 and NLRP3 inflammasome signaling in atherosclerosis. Front Immunol 14:1126823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mei Y, Dong B, Geng Z, Xu L (2022) Excess Uric Acid Induces Gouty Nephropathy Through Crystal Formation: A Review of Recent Insights. Front Endocrinol (Lausanne) 13:911968

    Article  PubMed  Google Scholar 

  8. Moltrasio C, Romagnuolo M, Marzano AV (2022) NLRP3 inflammasome and NLRP3-related autoinflammatory diseases: From cryopyrin function to targeted therapies. Front Immunol 13:1007705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhong WJ, Liu T, Yang HH, Duan JX, Yang JT, Guan XX, Xiong JB, Zhang YF, Zhang CY, Zhou Y, Guan CX (2023) TREM-1 governs NLRP3 inflammasome activation of macrophages by firing up glycolysis in acute lung injury. Int J Biol Sci 19:242–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang X, McDonald JG, Aryal B, Canfrán-Duque A, Goldberg EL, Araldi E, Ding W, Fan Y, Thompson BM, Singh AK, Li Q, Tellides G, Ordovás-Montanes J, García Milian R, Dixit VD, Ikonen E, Suárez Y, Fernández-Hernando C (2021) Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proc Natl Acad Sci USA 118:e2107682118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Groenen AG, Halmos B, Tall AR, Westerterp M (2021) Cholesterol efflux pathways, inflammation, and atherosclerosis. Crit Rev Biochem Mol Biol 56:426–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baldrighi M, Mallat Z, Li X (2017) NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis 267:127–138

    Article  CAS  PubMed  Google Scholar 

  13. Zeng W, Wu D, Sun Y, Suo Y, Yu Q, Zeng M, Gao Q, Yu B, Jiang X, Wang Y (2021) The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages. Sci Rep 11(1):19305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu Y, Tan HY, Li S, Wang N, Feng Y (2018) Panax notoginseng for Inflammation- Related Chronic Diseases: A Review on the Modulations of Multiple Pathways. Am J Chin Med 46(5):971–996

    Article  CAS  PubMed  Google Scholar 

  15. Jia C, Xiong M, Wang P, Cui J, Du X, Yang Q, Wang W, Chen Y, Zhang T (2014) Notoginsenoside R1 attenuates atherosclerotic lesions in ApoE deficient mouse model. PLoS ONE 9:99849

    Article  Google Scholar 

  16. Tian X, Chen X, Jiang Q, Sun Q, Liu T, Hong Y, Zhang Y, Jiang Y, Shao M, Yang R, Li C, Wang Q, Wang Y (2022) Notoginsenoside R1 Ameliorates Cardiac Lipotoxicity Through AMPK Signaling Pathway. Front Pharmacol 13:864326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao J, Cui L, Sun J, Xie Z, Zhang L, Ding Z, Quan X (2020) Notoginsenoside R1 alleviates oxidized low-density lipoprotein-induced apoptosis, inflammatory response, and oxidative stress in HUVECS through modulation of XIST/miR-221-3p/TRAF6 axis. Cell Signal 76:109781

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Liu Z, Liao J, Chen Q, Lu X, Fan X (2023) Network pharmacology approaches for research of Traditional Chinese Medicines. Chin J Nat Med 21:323–332

    PubMed  Google Scholar 

  19. Wang M, Ma J (2019) Effect of NGR1 on the Atopic Dermatitis Model and its Mechanisms. Open Med (Wars) 14:847–853

    Article  CAS  PubMed  Google Scholar 

  20. Zhu T, Xie WJ, Wang L, Jin XB, Meng XB, Sun GB, Sun XB (2021) Notoginsenoside R1 activates the NAMPT-NAD+-SIRT1 cascade to promote postischemic angiogenesis by modulating Notch signaling. Biomed Pharmacother 140:111693

    Article  CAS  PubMed  Google Scholar 

  21. Zhou P, Xie W, Meng X, Zhai Y, Dong X, Zhang X, Sun G, Sun X (2019) Notoginsenoside R1 Ameliorates Diabetic Retinopathy through PINK1-Dependent Activation of Mitophagy. Cells 8(3):213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Q, Liu L, Hu Y, Shen L, Li L, Wang Y (2022) Kv1.3 Channel Is Involved In Ox-LDL-induced Macrophage Inflammation Via ERK/NF-κB signaling pathway. Arch Biochem Biophys 730:109394

    Article  CAS  PubMed  Google Scholar 

  23. Fu C, Yin D, Nie H, Sun D (2018) Notoginsenoside R1 Protects HUVEC Against Oxidized Low Density Lipoprotein (Ox-LDL)-Induced Atherogenic Response via Down-Regulating miR-132. Cell Physiol Biochem 51:1739–1750

    Article  CAS  PubMed  Google Scholar 

  24. He X, Fan X, Bai B, Lu N, Zhang S, Zhang L (2021) Pyroptosis is a critical immune- inflammatory response involved in atherosclerosis. Pharmacol Res 165:105447

    Article  CAS  PubMed  Google Scholar 

  25. Toldo S, Mezzaroma E, Buckley LF, Potere N, Di Nisio M, Biondi-Zoccai G, Van Tassell BW, Abbate A (2022) Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol Ther 236:108053

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

This study was partly supported by the Science and Technology Project of Jiangxi Provincial Department of Education (GJJ2201302), the Graduate Innovation Special Fund Project (YC2021-X21), the Undergraduate Innovation Special Fund Project (S202311318080X), and supported by the funding from Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases (2022TMCK001).

Author information

Authors and Affiliations

Authors

Contributions

J-yY performed the experiments, statistical analyses, and wrote the paper draft. J-Yh and Y-fX contributed to network pharmacology analysis. HL and LL performed the animal experiments. J-lW and S-sL contributed to statistical analyses. X-pL and JY supervised the research. MD contributed to correct the draft. H-hF contributed to the design of the study and correct the draft. All the authors approved the final version of the manuscript.

Corresponding author

Correspondence to Haihong Fang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 748 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Hu, J., Baldini, M. et al. Integrating network pharmacology and experimental models to identify notoginsenoside R1 ameliorates atherosclerosis by inhibiting macrophage NLRP3 inflammasome activation. J Nat Med 78, 644–654 (2024). https://doi.org/10.1007/s11418-023-01776-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01776-w

Keywords

Navigation