Skip to main content
Log in

Identification of pheophorbide a as an inhibitor of receptor for advanced glycation end products in Mallotus japonicus

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Accumulation of advanced glycation end products (AGEs) plays an important role in diabetes, immunoinflammation, and cardiovascular and neurodegenerative diseases. Since AGEs mediate their pathological effects through interaction with receptor for AGEs (RAGE), RAGE antagonists would provide a useful therapeutic option for various health disorders. Therefore, in this study, we aimed to identify phytochemicals that would inhibit binding of AGEs to RAGE, which may help develop new drug leads and/or nutraceuticals for AGE–RAGE-related diseases. On screening ethanol extracts obtained from 700 plant materials collected in Myanmar, we found that the ethanol extract from the leaves of Mallotus philippensis inhibited the binding of AGEs to RAGE. We also found that the leaves of M. japonicus, which belongs to the same genera and distributes abundantly in Japan, exhibited the inhibitory activity similar to M. philippensis. Activity-guided fractionation and LC/MS analysis of the ethanol extract of M. japonicus helped identify pheophorbide a (PPBa) as a major component in the active fraction, along with some other pheophorbide derivatives. PPBa exhibited potent inhibitory activity against AGE–RAGE binding, with an IC50 value (0.102 μM) comparable to that of dalteparin (0.084 μM). PPBa may be a valuable natural product for use as a therapeutic agent and/or a nutraceutical against various health complications arising from activation of the AGE–RAGE axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Uribarri J, del Castillo MD, de la Maza MP, Filip R, Gugliucci A, Luevano-Contreras C, Macías-Cervantes MH, Bastos DHM, Medrano A, Menini T, Portero-Otin M, Rojas A, Sampaio GR, Wrobel K, Garay-Sevilla ME (2015) Dietary advanced glycation end products and their role in health and disease. Adv Nutr 6:461–473. https://doi.org/10.3945/an.115.008433

    Article  PubMed  PubMed Central  Google Scholar 

  2. Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267:14998–15004

    Article  CAS  Google Scholar 

  3. Bongarzone S, Savickas V, Luzi F, Gee AD (2017) Targeting the receptor for advanced glycation endproducts (RAGE): a medicinal chemistry perspective. J Med Chem 60:7213–7232. https://doi.org/10.1021/acs.jmedchem.7b00058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605. https://doi.org/10.1161/CIRCULATIONAHA.106.621854

    Article  CAS  PubMed  Google Scholar 

  5. Yan SF, Ramasamy R, Schmidt AM (2010) The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature. Circ Res 106:842–853. https://doi.org/10.1161/CIRCRESAHA.109.212217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alexiou P, Chatzopoulou M, Pegklidou K, Demopoulos VJ (2010) RAGE: a multi-ligand receptor unveiling novel insights in health and disease. Curr Med Chem 17:2232–2252. https://doi.org/10.2174/092986710791331086

    Article  CAS  PubMed  Google Scholar 

  7. Lee YS, Kim H, Kim YH, Roh EJ, Han H, Shin KJ (2012) Synthesis and structure-activity relationships of tri-substituted thiazoles as RAGE antagonists for the treatment of Alzheimer’s disease. Bio Org Med Chem Lett 22:7555–7561. https://doi.org/10.1016/j.bmcl.2012.10.022

    Article  CAS  Google Scholar 

  8. Han YT, Choi GI, Son D, Kim NJ, Yun H, Lee S, Chang DJ, Hong HS, Kim H, Ha HJ, Kim YH, Park HJ, Lee J, Suh YG (2012) Ligand-based design, synthesis, and biological evaluation of 2-aminopyrimidines, a novel series of receptor for advanced glycation end products (RAGE) inhibitors. J Med Chem 55:9120–9135. https://doi.org/10.1021/jm300172z

    Article  CAS  PubMed  Google Scholar 

  9. Han YT, Kim K, Choi GI, An H, Son D, Kim H, Ha HJ, Son JH, Chung SJ, Park HJ, Lee J, Suh YG (2014) Pyrazole-5-carboxamides, novel inhibitors of receptor for advanced glycation end products (RAGE). Eur J Med Chem 79:128–142. https://doi.org/10.1016/j.ejmech.2014.03.072

    Article  CAS  PubMed  Google Scholar 

  10. Sen T, Samanta SK (2015) Medicinal plants, human health and biodiversity: a broad review. Adv Biochem Eng Biotechnol 147:59–110. https://doi.org/10.1007/10_2014_273

    Article  CAS  PubMed  Google Scholar 

  11. Dil FA, Ranjkesh Z, Goodazi MT (2019) A systematic review of antiglycation medicinal plants. Diabetes Metab Syndr 13:1225–1229. https://doi.org/10.1016/j.dsx.2019.01.053

    Article  Google Scholar 

  12. Gangwar M, Goel RK, Nath G (2014) Mallotus philippinensis Muell. Arg (Euphorbiaceae): ethnopharmacology and phytochemistry review. Biomed Res Int 2014:213973. https://doi.org/10.1155/2014/213973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kurosawa T (2016) Mallotus. In: Ohashi H, Kadota Y, Murata J, Yonekura K (eds) Wild Flowers of Japan, vol 3. Heibonsha Ltd Tokyo, Tokyo, pp 162–163

    Google Scholar 

  14. Sanajou D, Haghjo AG, Argani H, Aslani S (2018) AGE-RAGE axis blockade in diabetic nephropathy: current status and future directions. Eur J Pharmacol 15:158–164. https://doi.org/10.1016/j.ejphar.2018.06.001

    Article  CAS  Google Scholar 

  15. Myint KM, Yamamoto Y, Doi T, Kato I, Harashima A, Yonekura H, Watanabe T, Shinohara H, Takeuchi M, Tsuneyama K, Hashimoto N, Asano M, Takasawa S, Okamoto H, Yamamoto H (2006) RAGE control of diabetic nephropathy in a mouse model: effects of RAGE gene disruption and administration of low-molecular weight heparin. Diabetes 55:2510–2522. https://doi.org/10.2337/db06-0221

    Article  CAS  PubMed  Google Scholar 

  16. Arumugam T, Ramachandran V, Gomez SB, Schmidt AM, Logsdon CD (2012) S100P-derived RAGE antagonistic peptide reduces tumor growth and metastasis. Clin Cancer Res 18:4356–4364. https://doi.org/10.1158/1078-0432.CCR-12-0221

    Article  CAS  PubMed  Google Scholar 

  17. Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988. https://doi.org/10.1016/j.bbabio.2010.12.007

    Article  CAS  PubMed  Google Scholar 

  18. Menè P, Festuccia F, Pugliese F (2003) Clinical potential of advanced glycation end-product inhibitors in diabetes mellitus. Am J Cardiovasc Drugs 3:315–320. https://doi.org/10.2165/00129784-200303050-00002

    Article  PubMed  Google Scholar 

  19. Burstein AH, Sabbagh M, Andrews R, Valcarce C, Dunn I, Altstiel L (2018) Development of azeliragon, an oral small molecule antagonist of the receptor for advanced glycation endproducts, for the potential slowing of loss of cognition in mild alzheimer’s disease. J Prev Alz Dis 5:149–154. https://doi.org/10.14283/jpad.2018.18

    Article  CAS  Google Scholar 

  20. Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R, Perry S, Paquette N, Deane RJ, Thiyagarajan M, Zarcone T, Fritz G, Friedman AE, Miller BL, Zlokovic BV (2012) A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest 122:1377–1392. https://doi.org/10.1172/JCI58642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie S, Guan Y, Zhu P, Li F, Yu M, Linhardt RJ, Chi L, Jin L (2018) Preparation of low molecular weight heparins from bovine and ovine heparins using nitrous acid degradation. Carbohydr Polym 197:83–91. https://doi.org/10.1016/j.carbpol.2018.05.070

    Article  CAS  PubMed  Google Scholar 

  22. Lee S, Piao C, Kim G, Kim JY, Choi E, Lee M (2018) Production and application of HMGB1 derived recombinant RAGE-antagonist peptide for anti-inflammatory therapy in acute lung injury. Eur J Pharm Sci 114:275–284. https://doi.org/10.1016/j.ejps.2017.12.019

    Article  CAS  PubMed  Google Scholar 

  23. Saide A, Lauritano C, Ianora A (2020) Pheophorbide a: state of the art. Mar Drugs 18:257. https://doi.org/10.3390/md18050257

    Article  CAS  PubMed Central  Google Scholar 

  24. Kim MJ, Kim HJ, Han JS (2019) Pheophorbide A from Gelidium amansii improves postprandial hyperglycemia in diabetic mice through α-glucosidase inhibition. Phytother Res 33:702–707. https://doi.org/10.1002/ptr.6260

    Article  CAS  PubMed  Google Scholar 

  25. Hong CO, Nam MH, Oh JS, Lee JW, Kim CT, Park KW, Lee DH, Lee KW (2016) Pheophorbide a from Capsosiphon fulvescens inhibits advanced glycation end products mediated endothelial dysfunction. Planta Med 82:46–57. https://doi.org/10.1055/s-0035-1557829

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We wish to thank Dr. Sayaka Masada, National Institute of Health Sciences, Japan, for her technical support related to LC/MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Mizukami.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 57 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, T., Matsuno, M., Ikui, N. et al. Identification of pheophorbide a as an inhibitor of receptor for advanced glycation end products in Mallotus japonicus. J Nat Med 75, 675–681 (2021). https://doi.org/10.1007/s11418-021-01495-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-021-01495-0

Keywords

Navigation