Skip to main content

Advertisement

Log in

Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The accumulation of iron-dependent lipid peroxides is one of the important causes of NAFLD. The purpose of this study is to explore the effect of dehydroabietic acid (DA) on ferroptosis in nonalcoholic fatty liver disease (NAFLD) mice and its possible mechanisms. DA improved NAFLD and reduced triglycerides (TG), total cholesterol (TC), and lipid peroxidation level and inhibited ferroptosis in the liver of HFD-induced mice. DA binds with Keap1 to form 3 stable hydrogen bonds at VAL512 and LEU557 and increased nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response elemen (ARE) luciferase activity. DA promoted the expression downstream of Nrf2 such as heme oxygenase-1 (HO-1), glutathione (GSH) and its peroxidase 4 (GPX4), so as to eliminate the accumulation of reactive oxygen species (ROS) and reduce lipid peroxides malondialdehyde (MDA) in the liver. DA inhibited ferroptosis and increased the expression of key genes such as ferroptosis suppressor protein 1 (FSP1) in vitro and vivo. In all, DA may bind with Keap1, activate Nrf2-ARE, induce its target gene expression, inhibit ROS accumulation and lipid peroxidation, and reduce HFD-induced NAFLD.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mundi MS, Velapati S, Patel J, Kellogg TA, Abu Dayyeh BK, Hurt RT (2020) Evolution of NAFLD and its management. Nutr Clin Pract 35:72–84

    Article  PubMed  Google Scholar 

  2. Ait Boudaoud A, Rives-Lange C, Perregaux JF, Radu A, Messager-Josipowicz D, Barsamian C, Carette C, Czernichow S (2019) Nutritional management of nonalcoholic fatty liver disease (NAFLD). Presse Med 48:1496–1501

    Article  PubMed  Google Scholar 

  3. Diehl AM, Day C (2017) Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N Engl J Med 377:2063–2072

    Article  CAS  PubMed  Google Scholar 

  4. Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R (2018) The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15:397–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R (2018) Publisher correction: the gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15:785

    Article  PubMed  PubMed Central  Google Scholar 

  6. Trojak A, Walus-Miarka M, Wozniakiewicz E, Malecki MT, Idzior-Walus B (2013) Nonalcoholic fatty liver disease is associated with low HDL cholesterol and coronary angioplasty in patients with type 2 diabetes. Med Sci Monit 19:1167–1172

    Article  PubMed  PubMed Central  Google Scholar 

  7. Roh JH, Park JH, Lee H, Yoon YH, Kim M, Kim YG, Park GM, Lee JH, Seong IW (2020) A close relationship between non-alcoholic fatty liver disease marker and new-onset hypertension in healthy Korean adults. Korean Circ J 50:695–705

    Article  PubMed  PubMed Central  Google Scholar 

  8. Adams LA, Anstee QM, Tilg H, Targher G (2017) Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut 66:1138–1153

    Article  PubMed  Google Scholar 

  9. Mantovani A, Zaza G, Byrne CD, Lonardo A, Zoppini G, Bonora E, Targher G (2018) Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: a systematic review and meta-analysis. Metabolism 79:64–76

    Article  CAS  PubMed  Google Scholar 

  10. Allen AM, Hicks SB, Mara KC, Larson JJ, Therneau TM (2019) The risk of incident extrahepatic cancers is higher in non-alcoholic fatty liver disease than obesity—a longitudinal cohort study. J Hepatol 71:1229–1236

    Article  PubMed  PubMed Central  Google Scholar 

  11. Day CPJO (1998) Hepatic steatosis: innocent bystander or guilty party? Hepatology 27(6):1463–1466

    Article  CAS  PubMed  Google Scholar 

  12. Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, Federico A, Persico M (2018) Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev 2018:9547613

    Article  PubMed  PubMed Central  Google Scholar 

  13. DE Spahis S, Borys JM, Levy E (2017) Oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis. Antioxid Redox Signal 26(10):519–541

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Shi J, Sun X, Li Y, Duan Y, Yao H (2020) Theaflavic acid from black tea protects PC12 cells against ROS-mediated mitochondrial apoptosis induced by OGD/R via activating Nrf2/ARE signaling pathway. J Nat Med 74:238–246

    Article  PubMed  Google Scholar 

  15. Nassir F, Ibdah JA (2014) Role of mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci 15:8713–8742

    Article  PubMed  PubMed Central  Google Scholar 

  16. Valenti L, Rametta R, Dongiovanni P, Motta BM, Canavesi E, Pelusi S, Pulixi EA, Fracanzani AL, Fargion S (2012) The A736V TMPRSS6 polymorphism influences hepatic iron overload in nonalcoholic fatty liver disease. PLoS ONE 7:e48804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hagstrom H, Nasr P, Bottai M, Ekstedt M, Kechagias S, Hultcrantz R, Stal P (2016) Elevated serum ferritin is associated with increased mortality in non-alcoholic fatty liver disease after 16 years of follow-up. Liver Int 36:1688–1695

    Article  PubMed  Google Scholar 

  18. Tsurusaki S, Tsuchiya Y, Koumura T, Nakasone M, Sakamoto T, Matsuoka M, Imai H, Yuet-Yin Kok C, Okochi H, Nakano H, Miyajima A, Tanaka M (2019) Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell Death Dis 10:449

    Article  PubMed  PubMed Central  Google Scholar 

  19. Qi J, Kim JW, Zhou Z, Lim CW, Kim B (2020) Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice. Am J Pathol 190:68–81

    Article  CAS  PubMed  Google Scholar 

  20. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, Li B (2019) Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol 12:34

    Article  PubMed  PubMed Central  Google Scholar 

  22. Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C (2019) Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med 133:221–233

    Article  CAS  PubMed  Google Scholar 

  23. Van Do B, Gouel F, Jonneaux A, Timmerman K, Gele P, Petrault M, Bastide M, Laloux C, Moreau C, Bordet R, Devos D, Devedjian JC (2016) Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol Dis 94:169–178

    Article  Google Scholar 

  24. Yu H, Guo P, Xie X, Wang Y, Chen G (2017) Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med 21:648–657

    Article  CAS  PubMed  Google Scholar 

  25. Latunde-Dada GO (2017) Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta Gen Subj 1861:1893–1900

    Article  CAS  PubMed  Google Scholar 

  26. Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26:165–176

    Article  CAS  PubMed  Google Scholar 

  27. Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng ZY (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev 2019:5080843

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen L, Xie J (2020) Ferroptosis-suppressor-protein 1: a potential neuroprotective target for combating ferroptosis. Mov Disord 35:400

    Article  PubMed  Google Scholar 

  29. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, Bassik MC, Nomura DK, Dixon SJ, Olzmann JA (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575:688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W, Wang J (2019) Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med 23:4900–4912

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhao Y, Kong GY, Pei WM, Zhou B, Zhang QQ, Pan BB (2019) Dexmedetomidine alleviates hepatic injury via the inhibition of oxidative stress and activation of the Nrf2/HO-1 signaling pathway. Eur Cytokine Netw 30:88–97

    CAS  PubMed  Google Scholar 

  32. Silva MM, Rocha CRR, Kinker GS, Pelegrini AL, Menck CFM (2019) The balance between NRF2/GSH antioxidant mediated pathway and DNA repair modulates cisplatin resistance in lung cancer cells. Sci Rep 9:17639

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tonelli C, Chio IIC, Tuveson DA (2018) Transcriptional regulation by Nrf2. Antioxid Redox Signal 29:1727–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dodson M, Castro-Portuguez R, Zhang DD (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 23:101107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Song X, Long D (2020) Nrf2 and ferroptosis: a new research direction for neurodegenerative diseases. Front Neurosci 14:267

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu B, Deng X, Jiang Q, Li G, Zhang J, Zhang N, Xin S, Xu K (2020) Scoparone improves hepatic inflammation and autophagy in mice with nonalcoholic steatohepatitis by regulating the ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway in macrophages. Biomed Pharmacother 125:109895

    Article  CAS  PubMed  Google Scholar 

  37. Abdalkader M, Lampinen R, Kanninen KM, Malm TM, Liddell JR (2018) Targeting Nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration. Front Neurosci 12:466

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hou W, Luo Z, Zhang G, Cao D, Li D, Ruan H, Ruan BH, Su L, Xu H (2017) Click chemistry-based synthesis and anticancer activity evaluation of novel C-14 1,2,3-triazole dehydroabietic acid hybrids. Eur J Med Chem 138:1042–1052

    Article  CAS  PubMed  Google Scholar 

  39. Chen NY, Xie YL, Lu GD, Ye F, Li XY, Huang YW, Huang ML, Chen TY, Li CP (2020) Synthesis and antitumor evaluation of (aryl)methyl-amine derivatives of dehydroabietic acid-based B ring-fused-thiazole as potential PI3K/AKT/mTOR signaling pathway inhibitors. Mol Divers 26:1-13

  40. Da Silva KR, Damasceno JL, Inacio MO, Abrao F, Ferreira NH, Tavares DC, Ambrosio SR, Veneziani RCS, Martins CHG (2019) Antibacterial and cytotoxic activities of Pinus tropicalis and Pinus elliottii resins and of the diterpene dehydroabietic acid against bacteria that cause dental caries. Front Microbiol 10:987

    Article  PubMed  PubMed Central  Google Scholar 

  41. Burcova Z, Kreps F, Greifova M, Jablonsky M, Haz A, Schmidt S, Surina I (2018) Antibacterial and antifungal activity of phytosterols and methyl dehydroabietate of Norway spruce bark extracts. J Biotechnol 282:18–24

    Article  CAS  PubMed  Google Scholar 

  42. Zhang WM, Yao Y, Yang T, Wang XY, Zhu ZY, Xu WT, Lin HX, Gao ZB, Zhou H, Yang CG, Cui YM (2018) The synthesis and antistaphylococcal activity of N-sulfonaminoethyloxime derivatives of dehydroabietic acid. Bioorg Med Chem Lett 28:1943–1948

    Article  CAS  PubMed  Google Scholar 

  43. Kim J, Kang YG, Lee JY, Choi DH, Cho YU, Shin JM, Park JS, Lee JH, Kim WG, Seo DB, Lee TR, Miyamoto Y, No KT (2015) The natural phytochemical dehydroabietic acid is an anti-aging reagent that mediates the direct activation of SIRT1. Mol Cell Endocrinol 412:216–225

    Article  CAS  PubMed  Google Scholar 

  44. Kim E, Kang YG, Kim YJ, Lee TR, Yoo BC, Jo M, Kim JH, Kim JH, Kim D, Cho JY (2019) Dehydroabietic acid suppresses inflammatory response via suppression of Src-, Syk-, and TAK1-mediated pathways. Int J Mol Sci 20:1593

    Article  CAS  PubMed Central  Google Scholar 

  45. Xie Z, Gao G, Wang H, Li E, Yuan Y, Xu J, Zhang Z, Wang P, Fu Y, Zeng H, Song J, Holscher C, Chen H (2020) Dehydroabietic acid alleviates high fat diet-induced insulin resistance and hepatic steatosis through dual activation of PPAR-gamma and PPAR-alpha. Biomed Pharmacother 127:110155

    Article  CAS  PubMed  Google Scholar 

  46. Tang JJ, Li JG, Qi W, Qiu WW, Li PS, Li BL, Song BL (2011) Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab 13:44–56

    Article  CAS  PubMed  Google Scholar 

  47. Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, Mourao A, Buday K, Sato M, Wanninger J, Vignane T, Mohana V, Rehberg M, Flatley A, Schepers A, Kurz A, White D, Sauer M, Sattler M, Tate EW, Schmitz W, Schulze A, O’Donnell V, Proneth B, Popowicz GM, Pratt DA, Angeli JPF, Conrad M (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575:693–698

    Article  CAS  PubMed  Google Scholar 

  48. Rafiei H, Omidian K, Bandy B (2019) Dietary polyphenols protect against oleic acid-induced steatosis in an in vitro model of NAFLD by modulating lipid metabolism and improving mitochondrial function. Nutrients 11:541

    Article  CAS  PubMed Central  Google Scholar 

  49. Song YM, Lee YH, Kim JW, Ham DS, Kang ES, Cha BS, Lee HC, Lee BW (2015) Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy 11:46–59

    Article  PubMed  Google Scholar 

  50. Wang J, Jiang W (2020) The effects of RKI-1447 in a mouse model of nonalcoholic fatty liver disease induced by a high-fat diet and in hepg2 human hepatocellular carcinoma cells treated with oleic acid. Med Sci Monit 26:e919220

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Steensels S, Ersoy BA (2019) Fatty acid activation in thermogenic adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 1864:79–90

    Article  CAS  PubMed  Google Scholar 

  52. Ayala A, Munoz MF, Arguelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gaschler MM, Stockwell BR (2017) Lipid peroxidation in cell death. Biochem Biophys Res Commun 482:419–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Asghari S, Hamedi-Shahraki S, Amirkhizi F (2020) Systemic redox imbalance in patients with nonalcoholic fatty liver disease. Eur J Clin Invest 50:e13211

    Article  PubMed  Google Scholar 

  55. Farzanegi P, Dana A, Ebrahimpoor Z, Asadi M, Azarbayjani MA (2019) Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): roles of oxidative stress and inflammation. Eur J Sport Sci 19:994–1003

    Article  PubMed  Google Scholar 

  56. Zhang CH, Xiao Q, Sheng JQ, Liu TT, Cao YQ, Xue YN, Shi M, Cao Z, Zhou LF, Luo XQ, Deng KZ, Chen C (2020) Gegen Qinlian Decoction abates nonalcoholic steatohepatitis associated liver injuries via anti-oxidative stress and anti-inflammatory response involved inhibition of toll-like receptor 4 signaling pathways. Biomed Pharmacother 126:110076

    Article  CAS  PubMed  Google Scholar 

  57. Lei P, Bai T, Sun Y (2019) Mechanisms of ferroptosis and relations with regulated cell death: a review. Front Physiol 10:139

    Article  PubMed  PubMed Central  Google Scholar 

  58. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D, Radmark O, Kobayashi S, Seibt T, Beck H, Neff F, Esposito I, Wanke R, Forster H, Yefremova O, Heinrichmeyer M, Bornkamm GW, Geissler EK, Thomas SB, Stockwell BR, O’Donnell VB, Kagan VE, Schick JA, Conrad M (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16:1180–1191

    Article  CAS  PubMed  Google Scholar 

  59. Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15:234–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Imai H, Matsuoka M, Kumagai T, Sakamoto T, Koumura T (2017) Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol 403:143–170

    CAS  PubMed  Google Scholar 

  62. Soares MP, Seldon MP, Gregoire IP, Vassilevskaia T, Berberat PO, Yu J, Tsui TY, Bach FH (2004) Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation. J Immunol 172:3553–3563

    Article  CAS  PubMed  Google Scholar 

  63. Kwon MYPE, Lee SJ, Chung SW (2015) Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 27:24393–24403

    Article  Google Scholar 

  64. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63:173–184

    Article  CAS  PubMed  Google Scholar 

  65. Li L, Yang N, Nin L, Zhao Z, Chen L, Yu J, Jiang Z, Zhong Z, Zeng D, Qi H, Xu X (2015) Chinese herbal medicine formula tao hong si wu decoction protects against cerebral ischemia-reperfusion injury via PI3K/Akt and the Nrf2 signaling pathway. J Nat Med 69:76–85

    Article  PubMed  Google Scholar 

  66. Shi L, Hao Z, Zhang S, Wei M, Lu B, Wang Z, Ji L (2018) Baicalein and baicalin alleviate acetaminophen-induced liver injury by activating Nrf2 antioxidative pathway: the involvement of ERK1/2 and PKC. Biochem Pharmacol 150:9–23

    Article  CAS  PubMed  Google Scholar 

  67. Mittal R, Kumar A, Singh DP, Bishnoi M, Nag TC (2018) Ameliorative potential of rutin in combination with nimesulide in STZ model of diabetic neuropathy: targeting Nrf2/HO-1/NF-kB and COX signalling pathway. Inflammopharmacology 26:755–768

    Article  CAS  PubMed  Google Scholar 

  68. Tu W, Wang H, Li S, Liu Q, Sha H (2019) The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis 10:637–651

    Article  PubMed  PubMed Central  Google Scholar 

  69. Suzuki T, Yamamoto M (2015) Molecular basis of the Keap1-Nrf2 system. Free Radic Biol Med 88:93–100

    Article  CAS  PubMed  Google Scholar 

  70. Bellezza I, Giambanco I, Minelli A, Donato R (2018) Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res 1865:721–733

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Caili Zhang, Xianghua Liu, and Ning Sun (TEM Center, Henan University of Chinese Medicine) for their help with transmission electron microscope imaging in this study.

Funding

This work was supported by the Postdoctoral Foundation of China (No. 2018M642761), the Special Research Project of Henan Province on Traditional Chinese Medicine (No. 2018ZYD12), the Key Scientific Research Project Plan of Henan Higher Education Institutions (No. 19A360021), Program for Innovative Research Team (in Science and Technology)  in University of Henan Province (No. 21IRTSTHN026) and Leading Talents Program of Zhongyuan Science and Technology Innovation  (No. 204200510022).

Author information

Authors and Affiliations

Authors

Contributions

Data collection: Gai Gao, Erwen Li, and Yong Yuan; data analysis: Yu Fu, Pan Wang, Yonghui Qiao, and Xiaowei Zhang; experimental design: Hui Wang and Zhenqiang Zhang; project design: Zhishen Xie and Jiangyan Xu; data interpretation and manuscript writing: GaiGao and Zhishen Xie; manuscript editing: Christian Hölscher.

Corresponding authors

Correspondence to Hui Wang or Zhenqiang Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, G., Xie, Z., Li, Ew. et al. Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis. J Nat Med 75, 540–552 (2021). https://doi.org/10.1007/s11418-021-01491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-021-01491-4

Keywords

Navigation