Skip to main content
Log in

Anthraquinone-containing compound in rhubarb prevents indole production via functional changes in gut microbiota

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Indole is produced from dietary tryptophan by tryptophanase in intestinal bacteria, such as Escherichia coli. In the liver, indole is converted into indoxyl sulfate, a uremic toxin and risk factor for chronic kidney disease (CKD). Probiotics and prebiotics are currently used for suppressing CKD, but there are no drugs that directly suppress indole production. In this study, we developed an optimized HPLC method for analyzing indole production and evaluated the effect of diets and rhubarb on indole production via the changes of gut microbiota. In high-carbohydrate and high-fat diet-fed mice, the indole production was significantly higher than in high-fiber diet-fed mice. We further used the high-carbohydrate diet-fed mice as a model for examining the effect of rhubarb on indole production. The 20% methanol-eluted fraction of aqueous rhubarb extract significantly suppressed indole production, and the eluate constituent rhein 8-O-β-d-glucopyranoside (RG) contributed to this effect in a concentration-dependent manner. The effect of RG depended on the anthraquinone core substructure, i.e., the aglycone moiety (rhein) of RG, which appeared to inhibit the tryptophanase function in gut microbiota. Thus, in addition to earlier reports that rhubarb is an effective CKD treatment, our study demonstrated that the anthraquinone moiety in rhubarb prevents uremic toxin production via functional changes in gut microbiota, which suppresses CKD progression.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Japanese Society of Nephrology (2018a) Evidence-based clinical practice guideline for CKD 2018. Japan, Tokyo Igakusha, p 1

    Google Scholar 

  2. Kawakami T, Inagi R, Wada T, Tanaka T, Fujita T, Nangaku M (2010) Indoxyl sulfate inhibits proliferation of human proximal tubular cells via endoplasmic reticulum stress. Am J Physiol Renal Physiol 299:F568–F576. https://doi.org/10.1152/ajprenal.00659.2009

    Article  CAS  PubMed  Google Scholar 

  3. Chiang CK, Tanaka T, Inagi R, Fujita T, Nangaku M (2011) Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab Invest 91:1564–1571. https://doi.org/10.1038/labinvest.2011.114

    Article  CAS  PubMed  Google Scholar 

  4. Wood WA, Gunsalus IC, Umbreit WW (1947) Function of pyridoxal phosphate: resolution and purification of the tryptophanase enzyme of Escherichia coli. J Biol Chem 170:313–321

    CAS  Google Scholar 

  5. Burns RO, Demoss RD (1962) Properties of tryptophanase from Escherichia coli. Biochim Biophys Acta 65:233–244. https://doi.org/10.1016/0006-3002(62)91042-9

    Article  CAS  PubMed  Google Scholar 

  6. Botsford JL, Demoss RD (1972) Escherichia coli tryptophanase in the enteric environment. J Bacteriol 109:74–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Banoglu E, Jha GG, King RS (2001) Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate. Eur J Drug Metab Pharmacokinet 26:235–240. https://doi.org/10.1007/BF03226377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mishima E, Fukuda S, Mukawa C, Yuri A, Kanemitsu Y, Matsumoto Y, Akiyama Y, Fukuda NN, Tsukamoto H, Asaji K, Shima H, Kikuchi K, Suzuki C, Suzuki T, Tomioka Y, Soga T, Ito S, Abe T (2017) Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int 92:634–645. https://doi.org/10.1016/j.kint.2017.02.011

    Article  CAS  PubMed  Google Scholar 

  9. Ritz E (2011) Intestinal-renal syndrome: mirage or reality? Blood Purif 31:70–76

    Article  PubMed  Google Scholar 

  10. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267. https://doi.org/10.1126/science.1223813

    Article  CAS  PubMed  Google Scholar 

  11. Evenepoel P, Poesen R, Meijers B (2017) The gut-kidney axis. Pediatr Nephrol 32:2005–2014. https://doi.org/10.1007/s00467-016-3527-x

    Article  PubMed  Google Scholar 

  12. Yoshifuji A, Wakino S, Irie J, Tajima T, Hasegawa K, Kanda T, Tokuyama H, Hayashi K, Itoh H (2016) Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats. Nephrol Dial Transplant 31:401–412. https://doi.org/10.1093/ndt/gfv353

    Article  CAS  PubMed  Google Scholar 

  13. Furuse SU, Ohse T, Jo-Watanabe A, Shigehisa A, Kawakami K, Matsuki T, Chonan O, Nangaku M (2014) Galacto-oligosaccharides attenuate renal injury with microbiota modification. Physiol Rep 2:e12029. https://doi.org/10.14814/phy2.12029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vaziri ND, Liu SM, Lau WL, Khazaeli M, Nazertehrani S, Farzaneh SH, Kieffer DA, Adams SH, Martin RJ (2014) High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS ONE 9:e114881. https://doi.org/10.1371/journal.pone.0114881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mitsuma T, Yokozawa T, Oura H, Terasawa K (1987) Rhubarb therapy in patients with chronic renal failure (Part 2). Jpn J Nephrol 29:195–207

    CAS  Google Scholar 

  16. Oura H, Zheng PD, Yokozawa T (1984) Effect of onpi-to in rats with chronic renal failure. J Trad Med 1:209–217

    Google Scholar 

  17. Wu XQ, Fujioka K, Yokozawa T, Oura H (1990) Studies on the reciprocal action of component crude drug extract of Ompi-to in rats with renal failure. J Trad Med 7:1–5

    Google Scholar 

  18. Yokozawa T, Suzuki N, Oura H, Nonaka G, Nishioka I (1986) Effect of extracts obtained from rhubarb in rats with chronic renal failure. Chem Pharm Bull 34:4718–4723. https://doi.org/10.1248/cpb.34.4718

    Article  CAS  Google Scholar 

  19. Yokozawa T, Chen CP, Tanaka T, Kouno I (1998) Isolation from Wen-Pi-Tang of the active principles possessing antioxidation and radical-scavenging activities. Phytomedicine 5:367–373. https://doi.org/10.1016/S0944-7113(98)80019-6

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Z, Wei F, Vaziri ND, Cheng X, Bai X, Lin R, Zhao Y (2015) Metabolomics insights into chronic kidney disease and modulatory effect of rhubarb against tubulointerstitial fibrosis. Sci Rep 5:14472. https://doi.org/10.1038/srep14472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takayama K, Matsui E, Kobayashi T, Inoue H, Tsuruta Y, Okamura N (2011) High-performance liquid chromatographic determination and metabolic study of sennoside A in daiokanzoto by mouse intestinal bacteria. Chem Pharm Bull 59:1106–1109. https://doi.org/10.1248/cpb.59.1106

    Article  CAS  Google Scholar 

  22. Matsui E, Takayama K, Sato E, Okamura N (2011) The influence of glycyrrhiza and antibiotics on the purgative action of sennoside A from daiokanzoto in mice. Biol Pharm Bull 34:1438–1442. https://doi.org/10.1248/bpb.34.1438

    Article  CAS  PubMed  Google Scholar 

  23. Takayama K, Tsutsumi H, Ishizu T, Okamura N (2012) The influence of rhein 8-O-β-d-glucopyranoside on the purgative action of sennoside A from rhubarb in mice. Biol Pharm Bull 35:2204–2208. https://doi.org/10.1248/bpb.b12-00632

    Article  CAS  PubMed  Google Scholar 

  24. Takayama K, Morita T, Tabuchi N, Fukunaga M, Okamura N (2013) The effect of anthraquinones in daiokanzoto on increasing the synthesis of sennoside A-metabolic enzyme derived from bifidobacteria. J Trad Med 30:215–220. https://doi.org/10.11339/jtm.30.215

    Article  CAS  Google Scholar 

  25. Takayama K, Tabuchi N, Fukunaga M, Okamura N (2016) Rhein 8-O-β-d-glucopyranoside elicited the purgative action of daiokanzoto (da-huang-gan-cao-tang), despite dysbiosis by ampicillin. Biol Pharm Bull 39:378–383. https://doi.org/10.1248/bpb.b15-00815

    Article  CAS  PubMed  Google Scholar 

  26. Takayama K, Takahara C, Tabuchi N, Okamura N (2019) Daiokanzoto (Da-Huang-Gan-Cao-Tang) is an effective laxative in gut microbiota associated with constipation. Sci Rep 9:3833. https://doi.org/10.1038/s41598-019-40278-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scherzer R, Gdalevsky GY, Goldgur Y, Cohen-Luria R, Bittner S, Parola AH (2009) New tryptophanase inhibitors: towards prevention of bacterial biofilm formation. J Enzyme Inhib Med Chem 24:350–355. https://doi.org/10.1080/14756360802187612

    Article  CAS  PubMed  Google Scholar 

  28. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  30. Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech XuZ, Kightley EP, Thompson LR, Hyde ER, Gonzalez A, Knight R (2017) Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2:e00191-e216. https://doi.org/10.1128/mSystems.00191-16

    Article  PubMed  PubMed Central  Google Scholar 

  31. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  32. Carlier JP, Kouas G, Bonne I, Lozniewski A, Mory F (2004) Oribacterium sinus gen nov., sp. nov, within the family ‘Lachnospiraceae’ (phylum Firmicutes). Int J Syst Evol Microbiol 54:1611–1615. https://doi.org/10.1099/ijs.0.63060

    Article  CAS  PubMed  Google Scholar 

  33. Chen YY, Chen DQ, Chen L, Lin JR, Vaziri ND, Guo Y, Zhao YY (2019) Microbiome–metabolome reveals the contribution of gut–kidney axis on kidney disease. J Transl Med 17:5. https://doi.org/10.1186/s12967-018-1756-4

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schulman G, Berl T, Beck GJ, Remuzzi G, Ritz E, Shimizu M, Shobu Y, Kikuchi M (2016) The effects of AST-120 on chronic kidney disease progression in the United States of America: a post hoc subgroup analysis of randomized controlled trials. BMC Nephrol 17:141. https://doi.org/10.1186/s12882-016-0357-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cha RH, Kang SW, Park CW, Cha DR, Na KY, Kim SG, Yoon SA, Han SY, Chang JH, Park SK, Lim CS, Kim YS (2016) A randomized, controlled trial of oral intestinal sorbent AST-120 on renal function deterioration in patients with advanced renal dysfunction. Clin J Am Soc Nephrol 11:559–567. https://doi.org/10.2215/CJN.12011214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sato E, Tanaka A, Oyama J, Yamasaki A, Shimomura M, Hiwatashi A, Ueda Y, Amaha M, Nomura M, Matsumura D, Nakamura T, Node K (2016) Long-term effects of AST-120 on the progression and prognosis of pre-dialysis chronic kidney disease: a 5-year retrospective study. Heart Vessels 31:1625–1632. https://doi.org/10.1007/s00380-015-0785-7

    Article  PubMed  Google Scholar 

  37. Hatakeyama S, Yamamoto H, Okamoto A, Imanishi K, Tokui N, Okamoto T, Suzuki Y, Sugiyama N, Imai A, Kudo S, Yoneyama T, Hashimoto Y, Koie T, Kaminura N, Saitoh H, Funyu T, Ohyama C (2012) Effect of an oral adsorbent, AST-120, on dialysis initiation and survival in patients with chronic kidney disease. Int J Nephrol 2:376128. https://doi.org/10.1155/2012/376128

    Article  CAS  Google Scholar 

  38. Akizawa T, Asano Y, Morita S, Wakita T, Onishi Y, Fukuhara S, Gejyo F, Matsuo S, Yorioka N, Kurokawa K (2009) Effect of a carbonaceous oral adsorbent on the progression of CKD: a multicenter, randomized, controlled trial. Am J Kidney Dis 54:459–467. https://doi.org/10.1053/j.ajkd.2009.05.011

    Article  CAS  PubMed  Google Scholar 

  39. Ueda H, Shibahara N, Takagi S, Inoue T, Katsuoka Y (2007) AST-120, an oral adsorbent, delays the initiation of dialysis in patients with chronic kidney diseases. Ther Apher Dial 11:189–195. https://doi.org/10.1111/j.1744-9987.2007.00430.x

    Article  CAS  PubMed  Google Scholar 

  40. Schulman G, Berl T, Beck GJ, Remuzzi G, Ritz E, Arita K, Kato A, Shimizu M (2015) Randomized placebo-controlled EPPIC Trials of AST-120 in CKD. J Am Soc Nephrol 26:1732–1746. https://doi.org/10.1681/ASN.2014010042

    Article  CAS  PubMed  Google Scholar 

  41. Japanese Society of Nephrology (2018b) Evidence-based clinical practice guideline for CKD 2018. Tokyo Igakusha, Japan, pp 95–96

    Google Scholar 

  42. Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND (2014) Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol 39:230–237. https://doi.org/10.1159/000360010

    Article  CAS  PubMed  Google Scholar 

  43. Hu J, Zhong X, Yan J, Zhou D, Qin D, Xiao X, Zheng Y, Liu Y (2020) High-throughput sequencing analysis of intestinal flora changes in ESRD and CKD patients. BMC Nephrol 21:12. https://doi.org/10.1186/s12882-019-1668-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, Ni Z, Nguyen TH, Andersen GL (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83:308–315. https://doi.org/10.1038/ki.2012.345

    Article  PubMed  Google Scholar 

  45. Roager HM, Licht TR (2018) Microbial tryptophan catabolites in health and disease. Nat Commun 9:3294. https://doi.org/10.1038/s41467-018-05470-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature05414

    Article  PubMed  Google Scholar 

  47. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5:e9085. https://doi.org/10.1371/journal.pone.0009085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, Watanabe H, Masuda K, Nishimoto Y, Kubo M, Hosoda F, Rokutan H, Matsumoto M, Takamaru H, Yamada M, Matsuda T, Iwasaki M, Yamaji T, Yachida T, Soga T, Kurokawa K, Toyoda A, Ogura Y, Hayashi T, Hatakeyama M, Nakagama H, Saito Y, Fukuda S, Shibata T, Yamada T (2019) Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med 25:968–976. https://doi.org/10.1038/s41591-019-0458-7

    Article  CAS  PubMed  Google Scholar 

  49. Poesen R, Windey K, Neven E, Kuypers D, De Preter V, Augustijns P, D’Haese P, Evenepoel P, Verbeke K, Meijers B (2016) The influence of CKD on colonic microbial metabolism. J Am Soc Nephrol 27:1389–1399. https://doi.org/10.1681/ASN.2015030279

    Article  CAS  PubMed  Google Scholar 

  50. Sumida K, Molnar MZ, Potukuchi PK, Thomas F, Lu JL, Matsushita K, Yamagata K, Kalantar-Zadeh K, Kovesdy CP (2017) Constipation and incident CKD. J Am Soc Nephrol 28:1248–1258. https://doi.org/10.1681/ASN.2016060656

    Article  CAS  PubMed  Google Scholar 

  51. Mishima E, Fukuda S, Shima H, Hirayama A, Akiyama Y, Takeuchi Y, Fukuda NN, Suzuki T, Suzuki C, Yuri A, Kikuchi K, Tomioka Y, Ito S, Soga T, Abe T (2015) Alteration of the intestinal environment by lubiprostone is associated with amelioration of adenine-induced CKD. J Am Soc Nephrol 26:1787–1794. https://doi.org/10.1681/ASN.2014060530

    Article  CAS  PubMed  Google Scholar 

  52. Schmidt IM, Hübner S, Nadal J, Titze S, Schmid M, Bärthlein B, Schlieper G, Dienemann T, Schultheiss UT, Meiselbach H, Köttgen A, Flöge J, Busch M, Kreutz R, Kielstein JT, Eckardt KU (2019) Patterns of medication use and the burden of polypharmacy in patients with chronic kidney disease the German Chronic Kidney Disease study. Clin Kidney J 12:663–672. https://doi.org/10.1093/ckj/sfz046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Mitsutoshi Mizutani, Ms. Yoko Kada, Mr. Ryoichi Sugihara, Ms. Sayaka Kawamura, and Mr. Yusuke Fukushima for their technical assistance. We would like to thank Editage (www.editage.jp) for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kento Takayama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takayama, K., Maehara, S., Tabuchi, N. et al. Anthraquinone-containing compound in rhubarb prevents indole production via functional changes in gut microbiota. J Nat Med 75, 116–128 (2021). https://doi.org/10.1007/s11418-020-01459-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-020-01459-w

Keywords

Navigation