Skip to main content
Log in

Sharp Interpolation Inequalities on the Sphere: New Methods and Consequences

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

This paper is devoted to various considerations on a family of sharp interpolation inequalities on the sphere, which in dimension greater than 1 interpolate between Poincaré, logarithmic Sobolev and critical Sobolev (Onofri in dimension two) inequalities. The connection between optimal constants and spectral properties of the Laplace-Beltrami operator on the sphere is emphasized. The authors address a series of related observations and give proofs based on symmetrization and the ultraspherical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, A., Bartier, J. P. and Dolbeault, J., Interpolation between logarithmic Sobolev and Poincaré inequalities, Commun. Math. Sci., 5, 2007, 971–979.

    MathSciNet  MATH  Google Scholar 

  2. Arnold, A. and Dolbeault, J., Refined convex Sobolev inequalities, J. Funct. Anal., 225, 2005, 337–351.

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, A., Markowich, P., Toscani, G., et al., On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Part. Diff. Eq., 26, 2001, 43–100.

    Article  MathSciNet  MATH  Google Scholar 

  4. Aubin, T., Probl`emes isopérimétriques et espaces de Sobolev, J. Diff. Geom., 11, 1976, 573–598.

    MathSciNet  MATH  Google Scholar 

  5. Baernstein, A. and Taylor, B. A., Spherical rearrangements, subharmonic functions, and *-functions in n-space, Duke Math. J., 43, 1976, 245–268.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bakry, D., Une suite d’inégalités remarquables pour les opérateurs ultrasphériques, C. R. Acad. Sci. Paris Sér. I Math., 318, 1994, 161–164.

    MathSciNet  MATH  Google Scholar 

  7. Bakry, D. and Bentaleb, A., Extension of Bochner-Lichnérowicz formula on spheres, Ann. Fac. Sci. Toulouse Math., 14(6), 2005, 161–183.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bakry, D. and émery, M., Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci. Paris Sér. I Math., 299, 1984, 775–778.

    MATH  Google Scholar 

  9. Bakry, D. and émery, M., Diffusions hypercontractives, séminaire de probabilités, XIX, 1983/1984, Lecture Notes in Math., Vol. 1123, Springer-Verlag, Berlin, 1985, 177–206.

    Book  Google Scholar 

  10. Beckner, W., A generalized Poincaré inequality for Gaussian measures, Proc. Amer. Math. Soc., 105, 1989, 397–400.

    MathSciNet  MATH  Google Scholar 

  11. Beckner, W., Sobolev inequalities, the Poisson semigroup, and analysis on the sphere Sn, Proc. Nat. Acad. Sci. U. S. A., 89, 1992, 4816–4819.

    Article  MathSciNet  MATH  Google Scholar 

  12. Beckner, W., Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math., 138(2), 1993, 213–242.

    Article  MathSciNet  MATH  Google Scholar 

  13. Bentaleb, A., Développement de la moyenne d’une fonction pour la mesure ultrasphérique, C. R. Acad. Sci. Paris Sér. I Math., 317, 1993, 781–784.

    MathSciNet  MATH  Google Scholar 

  14. Bentaleb, A., Inégalité de Sobolev pour l’opérateur ultrasphérique, C. R. Acad. Sci. Paris Sér. I Math., 317, 1993, 187–190.

    MathSciNet  MATH  Google Scholar 

  15. Bentaleb, A., Sur l’hypercontractivité des semi-groupes ultrasphériques, séminaire de probabilités, XXXIII, Lecture Notes in Math., Vol. 1709, Springer-Verlag, Berlin, 1999, 410–414.

    Book  Google Scholar 

  16. Bentaleb, A., L’hypercontractivité des semi-groupes de Gegenbauer multidimensionnels-famille d’inégalit és sur le cercle, Int. J. Math. Game Theory Algebra, 12, 2002, 259–273.

    MathSciNet  MATH  Google Scholar 

  17. Bentaleb, A., Sur les fonctions extrémales des inégalités de Sobolev des opérateurs de diffusion, séminaire de probabilités, XXXVI, Lecture Notes in Math., Vol. 1801, Springer-Verlag, Berlin, 2003, 230–250.

    Google Scholar 

  18. Bentaleb, A. and Fahlaoui, S., Integral inequalities related to the Tchebychev semigroup, Semigroup Forum, 79, 2009, 473–479.

    Article  MathSciNet  MATH  Google Scholar 

  19. Bentaleb, A. and Fahlaoui, S., A family of integral inequalities on the circle S1, Proc. Japan Acad. Ser. A Math. Sci., 86, 2010, 55–59.

    Article  MathSciNet  MATH  Google Scholar 

  20. Berger, M., Gauduchon, P. and Mazet, E., Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin, 1971.

    MATH  Google Scholar 

  21. Bidaut-Véron, M. F. and Véron, L., Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106, 1991, 489–539.

    Article  MathSciNet  MATH  Google Scholar 

  22. Bolley, F. and Gentil, I., Phi-entropy inequalities and Fokker-Planck equations, Progress in Analysis and Its Applications, World Sci. Publ., Hackensack, NJ, 2010, 463–469.

    Google Scholar 

  23. Bolley, F. and Gentil, I., Phi-entropy inequalities for diffusion semigroups, J. Math. Pures Appl., 93(9), 2010, 449–473.

    MathSciNet  MATH  Google Scholar 

  24. Brock, F., A general rearrangement inequality à la Hardy-Littlewood, J. Inequal. Appl., 5, 2000, 309–320.

    MathSciNet  MATH  Google Scholar 

  25. Carlen, E. and Loss, M., Computing symmetries, the logarithmic HLS inequality and Onofri’s inequality on Sn, Geom. Funct. Anal., 2, 1992, 90–104.

    Article  MathSciNet  MATH  Google Scholar 

  26. Chafaï, D., Entropies, convexity, and functional inequalities: on φ-entropies and φ-Sobolev inequalities, J. Math. Kyoto Univ., 44, 2004, 325–363.

    MathSciNet  Google Scholar 

  27. Funk, P., Beiträge zur Theorie der Kegelfunktionen, Math. Ann., 77, 1915, 136–162.

    Article  MathSciNet  MATH  Google Scholar 

  28. Gidas, B. and Spruck, J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34, 1981, 525–598.

    Article  MathSciNet  MATH  Google Scholar 

  29. Gross, L., Logarithmic Sobolev inequalities, Amer. J. Math., 97, 1975, 1061–1083.

    Article  MathSciNet  Google Scholar 

  30. Hebey, E., Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, Vol. 5, New York University Courant Institute of Mathematical Sciences, New York, 1999.

    Google Scholar 

  31. Hecke, E., Über orthogonal-invariante Integralgleichungen, Math. Ann., 78, 1917, 398–404.

    Article  MathSciNet  MATH  Google Scholar 

  32. Latała, R. and Oleszkiewicz, K., Between Sobolev and Poincaré, Geometric aspects of functional analysis, Lecture Notes in Math., Vol. 1745, Springer-Verlag, Berlin, 2000, 147–168.

    Book  Google Scholar 

  33. Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118(2), 1983, 349–374.

    Article  MathSciNet  MATH  Google Scholar 

  34. Mueller, C. E. and Weissler, F. B., Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere, J. Funct. Anal., 48, 1982, 252–283.

    Article  MathSciNet  MATH  Google Scholar 

  35. Rosen, G., Minimum value for c in the Sobolev inequality φ 3∥ ≤ c∇φ∥3, SIAM J. Appl. Math., 21, 1971, 30–32.

    Article  MathSciNet  MATH  Google Scholar 

  36. Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110(4), 1976, 353–372.

    Article  MathSciNet  MATH  Google Scholar 

  37. Weissler, F. B., Logarithmic Sobolev inequalities and hypercontractive estimates on the circle, J. Funct. Anal., 37, 1980, 218–234.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Dolbeault.

Additional information

In honor of the scientific heritage of Jacques-Louis Lions

Project supported by ANR grants CBDif and NoNAP, the ECOS project (No. C11E07), the Chilean research grants Fondecyt (No. 1090103), Fondo Basal CMM-Chile, Project Anillo ACT-125 CAPDE and the National Science Foundation (No. DMS-0901304).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolbeault, J., Esteban, M.J., Kowalczyk, M. et al. Sharp Interpolation Inequalities on the Sphere: New Methods and Consequences. Chin. Ann. Math. Ser. B 34, 99–112 (2013). https://doi.org/10.1007/s11401-012-0756-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-012-0756-6

Keywords

2000 MR Subject Classification

Navigation