Skip to main content
Log in

Volumetric Vector-Based Representation for Indirect Illumination Caching

  • Short Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

This paper introduces a caching technique based on a volumetric representation that captures low-frequency indirect illumination. This structure is intended for efficient storage and manipulation of illumination. It is based on a 3D grid that stores a fixed set of irradiance vectors. During preprocessing, this representation can be built using almost any existing global illumination software. During rendering, the indirect illumination within a voxel is interpolated from its associated irradiance vectors, and is used as additional local light sources. Compared with other techniques, the 3D vector-based representation of our technique offers increased robustness against local geometric variations of a scene. We thus demonstrate that it may be employed as an efficient and high-quality caching data structure for bidirectional rendering techniques such as particle tracing or photon mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sloan P P, Kautz J, Snyder J. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph., 2002, 21(3): 527–536.

    Article  Google Scholar 

  2. Wang R, Wang R, Zhou K, Pan M, Bao H. An efficient GPU-based approach for interactive global illumination. ACM Trans. Graph., 2009, 28(3): 1–8.

    Google Scholar 

  3. Dutré P, Bala K, Bekaert P. Advanced Global Illumination (Second Edition). A. K. Peters Ltd., 2006.

  4. Kajiya J T. The rendering equation. In Proc. the 13th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1986), Dallas, USA, Aug. 1986, pp.143–150.

  5. Lafortune E P F, Willems Y D. Bi-directional path tracing. In Proc. International Conference on Computational Graphics and Visualization Techniques (Compugraphics 1993), Alvor, Portugal, Dec. 6-10, 1993, pp.145–153.

  6. Veach E, Guibas L J. Metropolis light transport. In Proc. Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1997), Los Angeles, USA, Aug. 3-8, 1997, pp.65–76.

  7. Jensen H W. Realistic Image Synthesis Using Photon Mapping. A.K. Peters, 2001.

  8. Walter B, Hubbard P M, Shirley P, Greenberg D P. Global illumination using local linear density estimation. In Proc. Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1997), Los Angeles, USA, Aug. 3-8, 1997, pp.217–259.

  9. Christensen P H, Batali D. An irradiance atlas for global illumination in complex production scenes. In Proc. Eurographics Symposium on Rendering, NorrkÄoping, Sweden, Jun. 21-23, 2004, pp.133–141.

  10. Tabellion E, Lamorlette A. An approximate global illumination system for computer generated films. ACM Trans. Graph., 2004, 23(3): 469–476.

    Article  Google Scholar 

  11. Arvo J R. The irradiance Jacobian for partially occluded polyhedral sources. In Proc. the 21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1994), Orlando, USA, July 1994, pp.343–350.

  12. Pacanowski R, Raynaud M, Granier X, Reuter P, Schlick C, Poulin P. Efficient streaming of 3D scenes with complex geometry and complex lighting. In Proc. International Symposium on 3D Web Technology (Web3D '2008), Los Angeles, USA, Aug. 9-10, 2008, pp.11–17.

  13. Pacanowski R, Raynaud M, Lacoste J, Granier X, Reuter P, Schlick C, Poulin P. Compact structures for interactive global illumination on large cultural objects. In International Symposium on Virtual Reality, Archaeology and Cultural Heritage: Shorts and Projects (VAST 2008), Braga, Portugal, Dec. 2008.

  14. Ward G J, Rubinstein F M, Clear R D. A ray tracing solution for diffuse interreflection. In Proc. Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1988), Atlanta, USA, Aug. 1-5, 1988, pp.85–92.

  15. Christensen P H. Faster global photon map global illumination. J. Graphics Tools, 1999, 4(3): 1–10.

    Google Scholar 

  16. K·rivánek J, Bouatouch K, Pattanaik S N, Zára J. Making radiance and irradiance caching practical: Adaptive caching and neighbor clamping. In Proc. Eurographics Symposium on Rendering 2006, Nicosia, Cyprus, Jun. 26-28, 2006, pp.127–138.

  17. Arikan O, Forsyth D A, O'Brien J F. Fast and detailed approximate global illumination by irradiance decomposition. ACM Trans. Graph., 2005, 24(3): 1108–1114.

    Article  Google Scholar 

  18. Stamminger M, Scheel A, Granier X, Perez-Carzorla F, Drettakis G, Sillion F. Efficient glossy global illumination with interactive viewing. Comput. Graph. Forum, 2000, 19(1): 13–25.

    Article  Google Scholar 

  19. Greger G, Shirley P, Hubbard P M, Greenberg D P. Irradiance volume. IEEE Comput. Graph. Appl., 1992, 18(2): 32–43.

    Article  Google Scholar 

  20. Lecot G, Lévy B, Alonso L, Paul J C. Master-element vector irradiance for large tessellated models. In Proc. International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia (GRAPHIT1905), Dunedin, New Zealand, Nov. 29-Dec. 2 2005, pp.315–322.

  21. Willmott A J, Heckbert P S, Garland M. Face cluster radiosity. In Proc. Eurographics Workshop on Rendering 99, Granada, Spain, Jun. 21-23, 1999, pp.293–304.

  22. Gobbetti E, Spanò L, Agus M. Hierarchical higher order face cluster radiosity for global illumination walkthroughs of complex non-diffuse environments. Comput. Graph. Forum, 2003, 22(3): 563–72.

    Article  Google Scholar 

  23. Lehtinen J, Zwicker M, Turquin E, Kontkanen J, Durand F, Sillion F, Aila T. A meshless hierarchical representation for light transport. ACM Trans. Graph., 2008, 27(3): 1–9.

    Article  Google Scholar 

  24. Zaninetti J, Serpaggi X, Péroche B. A vector approach for global illumination in ray tracing. Comput. Graph. Forum, 1998, 17(3): 149–158.

    Article  Google Scholar 

  25. Serpaggi X, Péroche B. An adaptive method for indirect illumination using light vectors. Comput. Graph. Forum, 2001, 20(3): 278–287.

    Article  Google Scholar 

  26. Gassenbauer V, Krivánek J, Bouatouch K. Spatial directional radiance caching. Comput. Graph. Forum, 2009, 28(4): 1189–1198.

    Article  Google Scholar 

  27. Havran V, Bittner J, Herzog R, Seidel H P. Ray maps for global illumination. In Proc. Eurographics Symposium on Rendering 2005, Konstanz, Germany, Jun. 29-Jul. 1, 2005, pp.43–54.

  28. Durand F, Holzschuch N, Soler C, Chan E, Sillion F. A frequency analysis of light transport. ACM Trans. Graph., 2005, 24(3): 1115–1126.

    Article  Google Scholar 

  29. Kontkanen J, Laine S. Sampling precomputed volumetric lighting. J. Graph. Tools, 2006, 11(3): 1–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Pacanowski.

Additional information

Romain Pacanowski's work was supported by the Lavoisier Grant from French Ministry of Foreign Affairs. Xavier Granier is supported by the Open Project Program of the State Key Lab of CAD&CG, Zhejiang University under Grant No. A1007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacanowski, R., Granier, X., Schlick, C. et al. Volumetric Vector-Based Representation for Indirect Illumination Caching. J. Comput. Sci. Technol. 25, 925–932 (2010). https://doi.org/10.1007/s11390-010-9377-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-010-9377-2

Keywords

Navigation