Skip to main content
Log in

Cholesterol is obligatory for polarization and chemotaxis but not for endocytosis and associated signaling from chemoattractant receptors in human neutrophils

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

Plasma membrane cholesterol is critical for neutrophil chemotaxis, although how cholesterol affects chemotactic signaling pathway has not been clearly delineated. Here we demonstrate that cholesterol was absolutely required for polarized redistribution of key chemotactic mediators in human neutrophils in response to all chemoattractants tested (fMet-Leu-Phe, and the chemokines CXCL1, CXCL8 and CXCL12). In particular, PI3K and phosphatidylinositol-3,4,5 triphosphate (PIP3) failed to accumulate at the front and phosphatase and tensin homolog (PTEN) at the back of chemoattractant-stimulated neutrophils after cholesterol depletion. Cholesterol depletion did not affect early chemoattractant signaling events such as G-protein activation, intracellular calcium flux or G-protein-independent endocytosis-linked signaling, including the activation of mitogen-activated protein kinase (MAPK), Hck and Fgr transduced by β-arrestin. During cell polarization, F-actin assemblies redistributed the cholesterol-rich microdomains and cytoskeleton-anchored proteins, including CD16 and CD44 from the leading edge. These data suggest that spatial polarization of chemotactic mediators is orchestrated by protein:protein interactions that organize cholesterol-rich domains of the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

APC:

Allophycocyanin

DRMs:

Detergent-resistant membranes

EGFR:

Epidermal growth factor receptor

fMLF:

N-Formyl-methionine-leucine-phenylalanine

FPR:

N-Formyl peptide receptor

GPCR:

G-protein-coupled receptor

GPI:

Glycosyl phosphatidylinositol

GRK:

G-protein-coupled receptor kinase

GROα:

Growth related oncogene α

HMG-CoA:

Hydroxy-methyl glutaryl CoA

IL-8:

Interleukin-8

IP3 :

Inositol-1,4,5 trisphosphate

Lat-B:

Latrunculin B

LTB4 :

Leukotriene B4

MAPK:

Mitogen-activated protein kinase

MβCD:

Methyl-β-cyclodextrin

PIP2 :

Phosphatidyl inositol 4,5 bisphosphate

PIP3 :

Phosphatidylinositol-3,4,5 triphosphate

PTEN:

Phosphatase and tensin homolog

PTX:

Pertussis toxin

SDF:

Stromal cell-derived factor

TM:

Transmembrane

References

  1. Prinz W (2002) Cholesterol trafficking in the secretory and endocytic systems. Semin Cell Dev Biol 13(3):197–203

    Article  PubMed  CAS  Google Scholar 

  2. Porter FD (2006) Cholesterol precursors and facial clefting. J Clin Invest 116(9):2322–2325

    Article  PubMed  CAS  Google Scholar 

  3. Simons K, Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295

    Article  PubMed  CAS  Google Scholar 

  4. Pierini LM et al (2003) Membrane lipid organization is critical for human neutrophil polarization. J Biol Chem 278(12):10831–10841

    Article  PubMed  CAS  Google Scholar 

  5. Gomez-Mouton C et al (2001) Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc Natl Acad Sci USA 98(17):9642–9647

    Article  PubMed  CAS  Google Scholar 

  6. Rajendran L, Simons K (2005) Lipid rafts and membrane dynamics. J Cell Sci 118(Pt 6):1099–1102

    Article  PubMed  CAS  Google Scholar 

  7. Kim CH (2005) The greater chemotactic network for lymphocyte trafficking: chemokines and beyond. Curr Opin Hematol 12(4):298–304

    Article  PubMed  CAS  Google Scholar 

  8. Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Annu Rev Immunol 18:217–242

    Article  PubMed  CAS  Google Scholar 

  9. Van Haastert PJ, Devreotes PN (2004) Chemotaxis: signalling the way forward. Nat Rev Mol Cell Biol 5(8):626–634

    Article  PubMed  Google Scholar 

  10. Servant G et al (1999) Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol Biol Cell 10(4):1163–1178

    PubMed  CAS  Google Scholar 

  11. Jin T et al (2000) Localization of the G protein betagamma complex in living cells during chemotaxis. Science 287(5455):1034–1036

    Article  PubMed  CAS  Google Scholar 

  12. Xu J et al (2003) Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114(2):201–214

    Article  PubMed  CAS  Google Scholar 

  13. Li Z et al (2003) Directional sensing requires G beta gamma-mediated PAK1 and PIX alpha-dependent activation of Cdc42. Cell 114(2):215–227

    Article  PubMed  CAS  Google Scholar 

  14. Gomez-Mouton C et al (2004) Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. J Cell Biol 164(5):759–768

    Article  PubMed  CAS  Google Scholar 

  15. Seveau S et al (2001) Cytoskeleton-dependent membrane domain segregation during neutrophil polarization. Mol Biol Cell 12(11):3550–3562

    PubMed  CAS  Google Scholar 

  16. Nuzzi PA, Senetar MA, Huttenlocher A (2007) Asymmetric localization of calpain 2 during neutrophil chemotaxis. Mol Biol Cell 18(3):795–805

    Article  PubMed  CAS  Google Scholar 

  17. Xiao Z et al (1997) Dynamic distribution of chemoattractant receptors in living cells during chemotaxis and persistent stimulation. J Cell Biol 139(2):365–374

    Article  PubMed  CAS  Google Scholar 

  18. Nieto M et al (1997) Polarization of chemokine receptors to the leading edge during lymphocyte chemotaxis. J Exp Med 186(1):153–158

    Article  PubMed  CAS  Google Scholar 

  19. Al-Awqati Q (1999) One hundred years of membrane permeability: does Overton still rule? Nat Cell Biol 1(8):E201–E202

    Article  PubMed  CAS  Google Scholar 

  20. Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308(5721):512–517

    Article  PubMed  CAS  Google Scholar 

  21. Rose JJ et al (2004) On the mechanism and significance of ligand-induced internalization of human neutrophil chemokine receptors CXCR1 and CXCR2. J Biol Chem 279(23):24372–24386

    Article  PubMed  CAS  Google Scholar 

  22. Xue M et al (2004) N-formyl peptide receptors cluster in an active raft-associated state prior to phosphorylation. J Biol Chem 279(43):45175–45184

    Article  PubMed  CAS  Google Scholar 

  23. Venkatesan S et al (2003) Distinct mechanisms of agonist-induced endocytosis for human chemokine receptors CCR5 and CXCR4. Mol Biol Cell 14(8):3305–3324

    Article  PubMed  CAS  Google Scholar 

  24. Kanegasaki S et al (2003) A novel optical assay system for the quantitative measurement of chemotaxis. J Immunol Methods 282(1–2):1–11

    Article  PubMed  CAS  Google Scholar 

  25. Barlic J et al (2000) Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI. Nat Immunol 1(3):227–233

    Article  PubMed  CAS  Google Scholar 

  26. Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394(6695):798–801

    Article  PubMed  CAS  Google Scholar 

  27. Manes S et al (1999) Membrane raft microdomains mediate front-rear polarity in migrating cells. Embo J 18(22):6211–6220

    Article  PubMed  CAS  Google Scholar 

  28. Hao M, Mukherjee S, Maxfield FR (2001) Cholesterol depletion induces large scale domain segregation in living cell membranes. Proc Natl Acad Sci USA 98(23):13072–13077

    Article  PubMed  CAS  Google Scholar 

  29. Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118

    Article  PubMed  CAS  Google Scholar 

  30. Laufs U et al (2002) Impact of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovasc Res 53(4):911–920

    Article  PubMed  CAS  Google Scholar 

  31. Danesh FR et al (2002) 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors prevent high glucose-induced proliferation of mesangial cells via modulation of Rho GTPase/p21 signaling pathway: implications for diabetic nephropathy. PNAS 99(12):8301–8305

    Article  PubMed  CAS  Google Scholar 

  32. Kilsdonk EPC et al (1995) Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem 270(29):17250–17256

    Article  PubMed  CAS  Google Scholar 

  33. Neufeld EB et al (1996) Intracellular trafficking of cholesterol monitored with a cyclodextrin. J Biol Chem 271(35):21604–21613

    Article  PubMed  CAS  Google Scholar 

  34. Tuluc F, Meshki J, Kunapuli SP (2003) Membrane lipid microdomains differentially regulate intracellular signaling events in human neutrophils. Int Immunopharmacol 3(13–14):1775–1790

    Article  PubMed  CAS  Google Scholar 

  35. Maxfield FR, Wustner D (2002) Intracellular cholesterol transport. J Clin Invest 110(7):891–898

    PubMed  CAS  Google Scholar 

  36. Iijima M, Devreotes P (2002) Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109(5):599–610

    Article  PubMed  CAS  Google Scholar 

  37. Funamoto S et al (2002) Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109(5):611–623

    Article  PubMed  CAS  Google Scholar 

  38. Scheid MP, Marignani PA, Woodgett JR (2002) Multiple phosphoinositide 3-kinase-dependent steps in activation of protein kinase B. Mol Cell Biol 22(17):6247–6260

    Article  PubMed  CAS  Google Scholar 

  39. Liu E et al (2005) Targeted deletion of integrin-linked kinase reveals a role in T-cell chemotaxis and survival. Mol Cell Biol 25(24):11145–11155

    Article  PubMed  CAS  Google Scholar 

  40. Totsukawa G et al (2004) Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J Cell Biol 164(3):427–439

    Article  PubMed  CAS  Google Scholar 

  41. Eddy RJ et al (2000) Ca2+-dependent myosin II activation is required for uropod retraction during neutrophil migration. J Cell Sci 113(Pt 7):1287–1298

    PubMed  CAS  Google Scholar 

  42. Rajendran L et al (2003) Asymmetric localization of flotillins/reggies in preassembled platforms confers inherent polarity to hematopoietic cells. Proc Natl Acad Sci USA 100(14):8241–8246

    Article  PubMed  CAS  Google Scholar 

  43. Unkeless JC et al (1995) Function of human Fc gamma RIIA and Fc gamma RIIIB. Semin Immunol 7(1):37–44

    Article  PubMed  CAS  Google Scholar 

  44. Guo YJ et al (1994) Palmitoylation of CD44 interferes with CD3-mediated signaling in human T lymphocytes. Int Immunol 6(2):213–221

    Article  PubMed  CAS  Google Scholar 

  45. Perschl A et al (1995) Transmembrane domain of CD44 is required for its detergent insolubility in fibroblasts. J Cell Sci 108(Pt 3):1033–1041

    PubMed  CAS  Google Scholar 

  46. Barlic J et al (2000) Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI. Nat Immunol 1(3):227–233

    Article  PubMed  CAS  Google Scholar 

  47. Barabe F et al (2002) Cholesterol-modulating agents selectively inhibit calcium influx induced by chemoattractants in human neutrophils. J Biol Chem 277(16):13473–13478

    Article  PubMed  CAS  Google Scholar 

  48. Seveau S et al (2000) Neutrophil polarity and locomotion are associated with surface redistribution of leukosialin (CD43), an antiadhesive membrane molecule. Blood 95(8):2462–2470

    PubMed  CAS  Google Scholar 

  49. Millan J, Qaidi M, Alonso MA (2001) Segregation of co-stimulatory components into specific T cell surface lipid rafts. Eur J Immunol 31(2):467–473

    Article  PubMed  CAS  Google Scholar 

  50. Sanchez-Madrid F, del Pozo MA (1999) Leukocyte polarization in cell migration and immune interactions. Embo J 18(3):501–511

    Article  PubMed  CAS  Google Scholar 

  51. Devreotes P, Janetopoulos C (2003) Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J Biol Chem 278(23):20445–20448

    Article  PubMed  CAS  Google Scholar 

  52. Weisswange I, Bretschneider T, Anderson KI (2005) The leading edge is a lipid diffusion barrier. J Cell Sci 118(19):4375–4380

    Article  PubMed  CAS  Google Scholar 

  53. Bodin S, Welch MD (2005) Plasma membrane organization is essential for balancing competing pseudopod- and uropod-promoting signals during neutrophil polarization and migration. Mol Biol Cell 16(12):5773–5783

    Article  PubMed  CAS  Google Scholar 

  54. Ward SG (2004) Do phosphoinositide 3-kinases direct lymphocyte navigation? Trends Immunol 25(2):67–74

    Article  PubMed  CAS  Google Scholar 

  55. Nombela-Arrieta C et al (2004) Differential requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing. Immunity 21(3):429–441

    Article  PubMed  CAS  Google Scholar 

  56. Lacalle RA et al (2004) PTEN regulates motility but not directionality during leukocyte chemotaxis. J Cell Sci 117(Pt 25):6207–6215

    Article  PubMed  CAS  Google Scholar 

  57. Li Z et al (2005) Regulation of PTEN by Rho small GTPases. Nat Cell Biol 7(4):399–404

    Article  PubMed  CAS  Google Scholar 

  58. Campbell RB, Liu F, Ross AH (2003) Allosteric activation of PTEN phosphatase by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 278(36):33617–33620

    Article  PubMed  CAS  Google Scholar 

  59. Walter RJ, Marasco WA (1984) Localization of chemotactic peptide receptors on rabbit neutrophils. Exp Cell Res 154(2):613–618

    Article  PubMed  CAS  Google Scholar 

  60. Walter RJ, Marasco WA (1987) Direct visualization of formylpeptide receptor binding on rounded and polarized human neutrophils: cellular and receptor heterogeneity. J Leukoc Biol 41(5):377–391

    PubMed  CAS  Google Scholar 

  61. Schmitt M, Bultmann B (1990) Fluorescent chemotactic peptides as tools to identify the f-Met-Leu-Phe receptor on human granulocytes. Biochem Soc Trans 18(2):219–222

    PubMed  CAS  Google Scholar 

  62. McKay DA, Kusel JR, Wilkinson PC (1991) Studies of chemotactic factor-induced polarity in human neutrophils. Lipid mobility, receptor distribution and the time-sequence of polarization. J Cell Sci 100( Pt 3):473–479

    PubMed  CAS  Google Scholar 

  63. van Buul JD et al (2003) Leukocyte-endothelium interaction promotes SDF-1-dependent polarization of CXCR4. J Biol Chem 278(32):30302–30310

    Article  PubMed  CAS  Google Scholar 

  64. Jiao X et al (2005) Ligand-induced partitioning of human CXCR1 chemokine receptors with lipid raft microenvironments facilitates G-protein-dependent signaling. Mol Cell Biol 25(13):5752–5762

    Article  PubMed  CAS  Google Scholar 

  65. Ferguson SS et al (1998) Molecular mechanisms of G protein-coupled receptor desensitization and resensitization. Life Sci 62(17–18):1561–1565

    Article  PubMed  CAS  Google Scholar 

  66. Krupnick JG, Benovic JL (1998) The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol 38:289–319

    Article  PubMed  CAS  Google Scholar 

  67. Laporte SA et al (1999) The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci USA 96(7):3712–3717

    Article  PubMed  CAS  Google Scholar 

  68. Mocsai A et al (1999) Adhesion-dependent degranulation of neutrophils requires the Src family kinases Fgr and Hck. J Immunol 162(2):1120–1126

    PubMed  CAS  Google Scholar 

  69. Ahn S et al (2004) Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 279(34):35518–35525

    Article  PubMed  CAS  Google Scholar 

  70. Shenoy SK et al (2006) Beta-aarrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 281(2):1261–1273

    Article  PubMed  CAS  Google Scholar 

  71. Gesty-Palmer D et al (2006) Distinct beta-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J Biol Chem 281(16):10856–10864

    Article  PubMed  CAS  Google Scholar 

  72. Sitrin RG et al (2006) Selective localization of recognition complexes for leukotriene B4 and formyl-Met-Leu-Phe within lipid raft microdomains of human polymorphonuclear neutrophils. J Immunol 177(11):8177–8184

    PubMed  CAS  Google Scholar 

  73. Fong AM et al (2002) Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proc Natl Acad Sci USA 99(11):7478–7483

    Article  PubMed  CAS  Google Scholar 

  74. Sun Y et al (2002) Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem 277(51):49212–49219

    Article  PubMed  CAS  Google Scholar 

  75. Ge L et al (2004) Constitutive protease-activated receptor-2-mediated migration of MDA MB-231 breast cancer cells requires both beta-arrestin-1 and -2. J Biol Chem 279(53):55419–55424

    Article  PubMed  CAS  Google Scholar 

  76. Munro S (2003) Lipid rafts: elusive or illusive? Cell 115(4):377–388

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Philip Murphy and Joshua Farber of LMI, NIAID for advice and comments and Owen Schwartz of the Biological Imaging Section, RTB, NIAID for technical advice. The Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundararajan Venkatesan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, J.J., Foley, J.F., Yi, L. et al. Cholesterol is obligatory for polarization and chemotaxis but not for endocytosis and associated signaling from chemoattractant receptors in human neutrophils. J Biomed Sci 15, 441–461 (2008). https://doi.org/10.1007/s11373-008-9239-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-008-9239-x

Keywords

Navigation