Skip to main content
Log in

Characterization of lactoferrin receptor in brain endothelial capillary cells and mouse brain

  • Published:
Journal of Biomedical Science

Summary

We present, herein, the evidence for lactoferrin (Lf) binding sites in brain endothelial capillary cells (BCECs) and mouse brain. The results from confocal microscopy showed the presence of Lf receptors on the surface of BCECs and the receptor-mediated endocytosis for Lf to enter the cells. Saturation binding analyses revealed that Lf receptors exhibited two classes of binding sites in BCECs (high affinity: dissociation constant (K d) = 6.77 nM, binding site density (B max) = 10.3 fmol bound/μg protein; low affinity: K d = 4815 nM, B max = 1190 fmol bound/μg protein) and membrane preparations of mouse brain (high affinity: K d = 10.61 nM, B max = 410 fmol bound/μg protein; low affinity: K d = 2228 nM, B max =  51641 fmol bound/μg protein). The distribution study indicated the effective uptake of 125I-Lf in brain after intravenous administration. The present study provides experimental evidence for the application of Lf as a novel ligand for brain targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suzuki Y.A., Lonnerdal B., (2004) Baculovirus expression of mouse lactoferrin receptor and tissue distribution in the mouse. Biometals 17:301–309

    Article  PubMed  CAS  Google Scholar 

  2. Ward P.P., Paz E., Conneely O.M., (2005) Multifunctional roles of lactoferrin: a critical overview. Cell. Mol. Life Sci. 62:2540–2548

    Article  PubMed  CAS  Google Scholar 

  3. Brock J.H. (2002) The physiology of lactoferrin. Biochem. Cell Biol. 80:1–6

    Article  PubMed  CAS  Google Scholar 

  4. Ward P.P., Uribe-Luna S., Conneely O.M., (2002) Lactoferrin and host defense. Biochem. Cell. Biol. 80:95–102

    Article  PubMed  CAS  Google Scholar 

  5. Suzuki Y.A., Lopez V., Lonnerdal B. (2005) Mammalian lactoferrin receptors: structure and function. Cell. Mol. Life Sci. 62:2560–2575

    Article  PubMed  CAS  Google Scholar 

  6. Ashida K., Sasaki H., Suzuki Y.A. (2004) Cellular internalization of lactoferrin in intestinal epithelial cells. Biometals 17:311–315

    Article  PubMed  CAS  Google Scholar 

  7. Faucheux B.A., Nillesse N., Damier P., Spik G., Mouatt-Prigent A., Pierce A., Leveugle B., Kubis N., Hauw J.J., Agid Y. (1995) Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease. Proc. Natl. Acad. Sci. U.S.A. 92:9603–9607

    Article  PubMed  CAS  Google Scholar 

  8. Talukder M.J., Takeuchi T., Harada E. (2003) Receptor-mediated transport of lactoferrin into the cerebrospinal fluid via plasma in young calves. J. Vet. Med. Sci. 65:957–964

    Article  PubMed  CAS  Google Scholar 

  9. Fillebeen C., Descamps L., Dehouck M.P., Fenart L., Benaissa M., Spik G., Cecchelli R., Pierce A. (1999) Receptor-mediated transcytosis of lactoferrin through the blood–brain barrier. J. Biol. Chem. 274:7011–7017

    Article  PubMed  CAS  Google Scholar 

  10. Ji B., Maeda J., Higuchi M., Inoue K., Akita H., Harashima H., Suhara T. (2006) Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci. 78:851–855

    Article  PubMed  CAS  Google Scholar 

  11. Terent A., Hallgren R., Venge P., Bergstrom K. (1981) Lactoferrin, lysozyme, and beta 2-microglobulin in cerebrospinal fluid. Elevated levels in patients with acute cerebrovascular lesions as indices of inflammation. Stroke 12:40–46

    PubMed  CAS  Google Scholar 

  12. Grau A.J., Willig V., Fogel W., Werle E. (2001) Assessment of plasma lactoferrin in Parkinson’s disease. Mov. Disord. 16:131–134

    Article  PubMed  CAS  Google Scholar 

  13. Qian Z.M., Li H., Sun H., Ho K. (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev. 54:561–587

    Article  PubMed  CAS  Google Scholar 

  14. Hatakeyama H., Akita H., Maruyama K., Suhara T., Harashima H. (2004) Factors governing the in vivo tissue uptake of transferrin-coupled polyethylene glycol liposomes in vivo. Int. J. Pharm. 281:25–33

    Article  PubMed  CAS  Google Scholar 

  15. Xie Y., Ye L.Y., Zhang X.B., Cui W., Lou J.N., Nagai T., Hou X.P. (2005) Transport of nerve growth factor encapsulated into liposomes across the blood–brain barrier: in vitro and in vivo studies. J. Control Release 105:106–119

    Article  PubMed  CAS  Google Scholar 

  16. Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72:248–254

    Article  PubMed  CAS  Google Scholar 

  17. Triguero D., Buciak J.L., Pardridge W.M. (1991) Cationization of immunoglobulin G results in enhanced organ uptake of the protein after intravenous administration in rats and primatc. J. Pharmacol. Exp. Ther. 258:186–192

    PubMed  CAS  Google Scholar 

  18. Sirinian M.I., Belleudi F., Campagna F., Ceridono M., Garofalo T., Quagliarini F., Verna R., Calandra S., Bertolini S., Sorice M., Torrisi M.R., Arca M. (2005) Adaptor protein ARH is recruited to the plasma membrane by low density lipoprotein (LDL) binding and modulates endocytosis of the LDL/LDL receptor complex in hepatocytes. J. Biol. Chem. 280:38416–38423

    Article  PubMed  CAS  Google Scholar 

  19. Visser C.C., Stevanović S., Voorwinden H., Bloois L., Gaillard P.J., Danhof M., Crommelin D.J.A., Boer A.G. (2005) Targeting liposomes with protein drugs to the blood–brain barrier in vitro. Euro. J. Pharm. Sci. 25:299–305

    CAS  Google Scholar 

  20. Terasaki T., Ohtsuki S., Hori S., Takanaga H., Nakashima E., Hosoya K. (2003) New approaches to in vitro models of blood–brain barrier drug transport. Drug Discov. Today 8:944–954

    Article  PubMed  CAS  Google Scholar 

  21. Demeule M., Regina A., Annabi B., Bertrand Y., Bojanowski M.W., Beliveau R. (2004) Brain endothelial cells as pharmacological targets in brain tumors. Mol. Neurobiol. 30:157–183

    Article  PubMed  CAS  Google Scholar 

  22. Eda S., Kikugawa K., Beppu M. (1996) Binding characteristics of human lactoferrin to the human monocytic leukemia cell line THP-1 differentiated into macrophages. Biol. Pharm. Bull. 19:167–175

    PubMed  CAS  Google Scholar 

  23. Talukder M.J., Takeuchi T., Harada E. (2003) Characteristics of lactoferrin receptor in bovine intestine: higher binding activity to the epithelium overlying Peyer’s patches. J. Vet. Med. A 50:123–131

    Article  CAS  Google Scholar 

  24. Shi N., Pardridge W.M. (2000) Noninvasive gene targeting to the brain. Proc. Natl. Acad. Sci. U.S.A. 97:7567–7572

    Article  PubMed  CAS  Google Scholar 

  25. Hattori Y., Maitani Y. (2005) Folate-linked lipid-based nanoparticle for targeted gene delivery. Curr. Drug Deliv. 2:243–252

    Article  PubMed  CAS  Google Scholar 

  26. Logroscino G., Marder K., Graziano J., Freyer G., Slavkovich V., LoIacono N., Cote L., Mayeux R. (1997) Altered systemic iron metabolism in Parkinson’s disease. Neurology 49:714–717

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the grant from National Natural Science Foundation of China (30400570).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Rq., Ke, Wl., Qu, Yh. et al. Characterization of lactoferrin receptor in brain endothelial capillary cells and mouse brain. J Biomed Sci 14, 121–128 (2007). https://doi.org/10.1007/s11373-006-9121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-006-9121-7

Keywords

Navigation