Skip to main content

Advertisement

Log in

The tumor-growth inhibitory activity of flavanone and 2′-OH flavanone in vitro and in vivo through induction of cell cycle arrest and suppression of cyclins and CDKs

  • Published:
Journal of Biomedical Science

Summary

Natural products, including flavonoids, are suggested to be involved in the protective effects of fruits and vegetables against cancer. However, studies concerning the effect of flavonoids frequently lacked data regarding to flavanones. In this study, we investigated the inhibitory effect of flavanone compounds, including flavanone, 2′-OH flavanone, 4′-OH flavanone, 6-OH flavanone, naringin and naringenin, on cell growth of various cancer cells. We determined that flavanone and 2′-OH flavanone inhibited cell growth of A549, LLC, AGS, SK-Hepl and HA22T cancer cells, while other flavanones showed little or no inhibition. We evaluated growth-inhibitory activity of flavanone and 2′-OH flavanone against highly proliferative human lung cancer cells (A549) via anchorage-independent and -dependent colony formation assay, and further showed that treatment of flavanone resulted in a G1 cell cycle arrest with reduction of cyclin D, E and cyclin-dependent kinase (CDK) 2, while treatment of 2′-OH flavanone led to a G2/M phase accumulation with reduction of cyclin B, D and Cdc2. Moreover, we demonstrated the improvement effect of flavanone and 2′-OH flavanone with anti-cancer drug, doxorubicin, on A549 cells. Finally, flavanone and 2′-OH flavanone were evidenced by its inhibition on the growth of A549 and Lewis lung carcinoma cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grana X., Reddy E.P. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11:211–219; 1995

    PubMed  CAS  Google Scholar 

  2. Swanton C. Cell-cycle targeted therapies. Lancet Oncol. 5:27–36; 2004

    Article  PubMed  CAS  Google Scholar 

  3. MacLachlan T.K., Sang N., Giordano A. Cyclins, cyclin-dependent kinases and cdk inhibitors: implications in cell cycle control and cancer. Crit. Rev. Eukaryot. Gene Expr. 5:127–156; 1995

    PubMed  CAS  Google Scholar 

  4. Vermeulen K., Van Bockstaele D.R., Berneman Z.N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36:131–149; 2003

    Article  PubMed  CAS  Google Scholar 

  5. Hall M., Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv. Cancer Res. 68:67–108; 1996

    Article  PubMed  CAS  Google Scholar 

  6. Shyur L.F., Chen C.H., Lo C.P., Wang S.Y., Kang P.L., Sun S.J., Chang C.A., Tzeng C.M., Yang N.S. Induction of apoptosis in MCF-7 human breast cancer cells by phytochemicals from Anoectochilus formosanus. J. Biomed. Sci. 11:928–939; 2004

    PubMed  CAS  Google Scholar 

  7. Wang X., Jia W., Zhao A. Anti-influenza agents from plants and traditional Chinese medicine. Phytother. Res. 20:335–341; 2006

    Article  PubMed  CAS  Google Scholar 

  8. Huh S.W., Bae S.M., Kim Y.W., Lee J.M., Namkoong S.E., Lee I.P., Kim S.H., Kim C.K., Ahn W.S. Anticancer effects of (-)-epigallocatechin-3-gallate on ovarian carcinoma cell lines. Gynecol. Oncol. 94:760–768; 2004

    Article  PubMed  CAS  Google Scholar 

  9. Lee H.Z., Leung H.W., Lai M.Y., Wu C.H. Baicalein induced cell cycle arrest and apoptosis in human lung squamous carcinoma CH27 cells. Anticancer Res. 25:959–964; 2005

    PubMed  CAS  Google Scholar 

  10. Lee K.H. Anticancer drug design based on plant-derived natural products. J. Biomed Sci. 6:236–250; 1999

    PubMed  CAS  Google Scholar 

  11. Weng M.S., Ho Y.S., Lin J.K. Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: involvement of p38 mitogen-activated protein kinase. Biochem. Pharmacol. 69:1815–1827; 2005

    Article  PubMed  CAS  Google Scholar 

  12. Manthey J.A., Grohmann K., Guthrie N. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem. 8:135–153; 2001

    PubMed  CAS  Google Scholar 

  13. Moulari B., Pellequer Y., Lboutounne H., Girard C., Chaumont J.P., Millet J., Muyard F. Isolation and in vitro antibacterial activity of astilbin, the bioactive flavanone from the leaves of Harungana madagascariensis Lam. ex Poir. (Hypericaceae). J. Ethnopharmacol. 106:272–278; 2006

    Article  PubMed  CAS  Google Scholar 

  14. Yao H., Liao Z.X., Wu Q., Lei G.Q., Liu Z.J., Chen D.F., Chen J.K., Zhou T.S. Antioxidative flavanone glycosides from the branches and leaves of Viscum coloratum. Chem. Pharm. Bull. (Tokyo) 54:133–135; 2006

    Article  CAS  Google Scholar 

  15. Manthey J.A., Guthrie N. Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J. Agric. Food Chem. 50:5837–5843; 2002

    Article  PubMed  CAS  Google Scholar 

  16. Kohno H., Taima M., Sumida T., Azuma Y., Ogawa H., Tanaka T. Inhibitory effect of mandarin juice rich in beta-cryptoxanthin and hesperidin on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced pulmonary tumorigenesis in mice. Cancer Lett. 174:141–150; 2001

    Article  PubMed  CAS  Google Scholar 

  17. Tanaka T., Makita H., Kawabata K., Mori H., Kakumoto M., Satoh K., Hara A., Sumida T., Fukutani K., Ogawa H. Modulation of N-methyl-N-amylnitrosamine-induced rat oesophageal tumourigenesis by dietary feeding of diosmin and hesperidin, both alone and in combination. Carcinogenesis 18:761–769; 1997

    Article  PubMed  CAS  Google Scholar 

  18. Tanaka T., Makita H., Ohnishi M., Mori H., Satoh K., Hara A., Sumida T., Fukutani K., Ogawa H. Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis in rats by flavonoids diosmin and hesperidin, each alone and in combination. Cancer Res. 57:246–252; 1997

    PubMed  CAS  Google Scholar 

  19. Yang M., Tanaka T., Hirose Y., Deguchi T., Mori H., Kawada Y. Chemopreventive effects of diosmin and hesperidin on N-butyl-N-(4-hydroxybutyl)nitrosamine-induced urinary-bladder carcinogenesis in male ICR mice. Int. J. Cancer 73:719–724; 1997

    Article  PubMed  CAS  Google Scholar 

  20. Ko C.H., Shen S.C., Lin H.Y., Hou W.C., Lee W.R., Yang L.L., Chen Y.C. Flavanones structure-related inhibition on TPA-induced tumor promotion through suppression of extracellular signal-regulated protein kinases: involvement of prostaglandin E2 in anti-promotive process. J. Cell Physiol. 193:93–102; 2002

    Article  PubMed  CAS  Google Scholar 

  21. Okuda T., Yoshida T., Hatano T. Pharmacologically active tannins isolated from medicinal plants. Basic Life Sci. 59:539–569; 1992

    PubMed  CAS  Google Scholar 

  22. Bost F., McKay R., Bost M., Potapova O., Dean N.M., Mercola D. The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Mol. Cell. Biol. 19:1938–1949; 1999

    PubMed  CAS  Google Scholar 

  23. Bai L., Zhu R., Chen Z., Gao L., Zhang X., Wang X., Bai C. Potential role of short hairpin RNA targeting epidermal growth factor receptor in growth and sensitivity to drugs of human lung adenocarcinoma cells. Biochem. Pharmacol. 71:1265–1271; 2006

    Article  PubMed  CAS  Google Scholar 

  24. Chen P.N., Chu S.C., Chiou H.L., Chiang C.L., Yang S.F., Hsieh Y.S. Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. Nutr. Cancer 53:232–243; 2005

    Article  PubMed  CAS  Google Scholar 

  25. Chen P.N., Hsieh Y.S., Chiou H.L., Chu S.C. Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways. Chem. Biol. Interact. 156:141–150; 2005

    Article  PubMed  CAS  Google Scholar 

  26. Zi X., Simoneau A.R. Flavokawain A, a novel chalcone from kava extract, induces apoptosis in bladder cancer cells by involvement of Bax protein-dependent and mitochondria-dependent apoptotic pathway and suppresses tumor growth in mice. Cancer Res. 65:3479–3486; 2005

    Google Scholar 

  27. Sigounas G., Sallah S., Sigounas V.Y. Erythropoietin modulates the anticancer activity of chemotherapeutic drugs in a murine lung cancer model. Cancer Lett. 214:171–179; 2004

    Article  PubMed  CAS  Google Scholar 

  28. Cos P., De Bruyne T., Hermans N., Apers S., Berghe D.V., Vlietinck A.J. Proanthocyanidins in health care: current and new trends. Curr. Med. Chem. 11:1345–1359; 2004

    PubMed  CAS  Google Scholar 

  29. Di Carlo G., Mascolo N., Izzo A.A., Capasso F. Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci. 65:337–353; 1999

    Article  PubMed  CAS  Google Scholar 

  30. Areias F.M., Rego A.C., Oliveira C.R., Seabra R.M. Antioxidant effect of flavonoids after ascorbate/Fe(2+)-induced oxidative stress in cultured retinal cells. Biochem. Pharmacol. 62:111–118; 2001

    Article  PubMed  CAS  Google Scholar 

  31. Hendriks J.J., de Vries H.E., van der Pol S.M., van den Berg T.K., van Tol E.A., Dijkstra C.D. Flavonoids inhibit myelin phagocytosis by macrophages; a structure-activity relationship study. Biochem. Pharmacol. 65:877–885; 2003

    Article  PubMed  CAS  Google Scholar 

  32. Shen S.C., Ko C.H., Tseng S.W., Tsai S.H., Chen Y.C. Structurally related antitumor effects of flavanones in vitro and in vivo: involvement of caspase 3 activation, p21 gene expression, and reactive oxygen species production. Toxicol. Appl. Pharmacol. 197:84–95; 2004

    Article  PubMed  CAS  Google Scholar 

  33. Singh R.P., Dhanalakshmi S., Agarwal R. Phytochemicals as cell cycle modulators – a less toxic approach in halting human cancers. Cell Cycle 1:156–161; 2002

    PubMed  CAS  Google Scholar 

  34. Connell-Crowley L., Harper J.W., Goodrich D.W. Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation. Mol. Biol. Cell. 8:287–301; 1997

    PubMed  CAS  Google Scholar 

  35. Zarkowska T., Mittnacht S. Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-dependent kinases. J. Biol. Chem. 272:12738–12746; 1997

    Article  PubMed  CAS  Google Scholar 

  36. Elledge S.J., Harper J.W. Cdk inhibitors: on the threshold of checkpoints and development. Curr. Opin. Cell Biol. 6:847–852; 1994

    Article  PubMed  CAS  Google Scholar 

  37. Carlson B., Lahusen T., Singh S., Loaiza-Perez A., Worland P.J., Pestell R., Albanese C., Sausville E.A., Senderowicz A.M. Down-regulation of cyclin D1 by transcriptional repression in MCF-7 human breast carcinoma cells induced by flavopiridol. Cancer Res. 59:4634–4641; 1999

    PubMed  CAS  Google Scholar 

  38. Buccheri G., Ferrigno D., Rosso A. A phase II study of methotrexate, doxorubicin, cyclophosphamide, and lomustine chemotherapy and lonidamine in advanced non-small cell lung cancer. Cancer 72:1564–1572; 1993

    Article  PubMed  CAS  Google Scholar 

  39. van Acker F.A., Boven E., Kramer K., Haenen G.R., Bast A., van der Vijgh W.J. Frederine, a new and promising protector against doxorubicin-induced cardiotoxicity. Clin. Cancer Res. 7:1378–1384; 2001

    PubMed  Google Scholar 

  40. Von Hoff D.D., Layard M.W., Basa P., Davis H.L. Jr., Von Hoff A.L., Rozencweig M., Muggia F.M. Risk factors for doxorubicin-induced congestive heart failure. Ann. Intern. Med. 91:710–717; 1979

    Google Scholar 

  41. Tyagi A.K., Agarwal C., Chan D.C., Agarwal R. Synergistic anti-cancer effects of silibinin with conventional cytotoxic agents doxorubicin, cisplatin and carboplatin against human breast carcinoma MCF-7 and MDA-MB468 cells. Oncol. Rep. 11:493–499; 2004

    PubMed  CAS  Google Scholar 

  42. Zhang X.Y., Bai D.C., Wu Y.J., Li W.G., Liu N.F. Proanthocyanidin from grape seeds enhances anti-tumor effect of doxorubicin both in vitro and in vivo. Pharmazie 60:533–538; 2005

    PubMed  CAS  Google Scholar 

  43. Manach C., Morand C., Gil-Izquierdo A., Bouteloup-Demange C., Remesy C. Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. Eur. J. Clin. Nutr. 57:235–242; 2003

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants of National Science Council, Republic of China (NSC 94-2311-B-040-005 & NSC 94-2313-B-166-004.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Chen Chu.

Additional information

Yung-Chin Hsiao and Yih-Shou Hsieh are equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsiao, YC., Hsieh, YS., Kuo, WH. et al. The tumor-growth inhibitory activity of flavanone and 2′-OH flavanone in vitro and in vivo through induction of cell cycle arrest and suppression of cyclins and CDKs. J Biomed Sci 14, 107–119 (2007). https://doi.org/10.1007/s11373-006-9117-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-006-9117-3

Key words

Navigation