Skip to main content
Log in

Heavy metals and benzo[a]pyrene in soils from construction and demolition rubble

  • Soils and Sediments in Urban and Mining Areas
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Rubble is an important component of urban soils worldwide, especially in Europe. In Berlin, Germany, rubble-composed soils cover about 17 % of the total city area and 60 % of the inner city. This study assesses the contamination status of rubble soil, particularly for heavy metals and benzo[a]pyrene (B[a]P).

Methods

The results of 164 soil surveys in Berlin, including more than 2,000 analyzed soil samples of topsoils, rubble subsoils, and natural material, have been analyzed for typical contamination patterns.

Results

The concentrations of all contaminants range over several orders of magnitude and follow negatively skewed log-normal distribution functions. For rubble-containing subsoils, proportions of 34, 71, 67, 68, 74, and 61 % of the analyzed samples exceed precautionary values of the German Soil Conservation Act, regarding Cd, Pb, Cu, Zn, Hg, and B[a]P, respectively. Similar results were found for topsoils. A minor part of the soils is contaminated with Cd, while Pb and Hg are the most typical contaminants of rubble material. In contrast to topsoils and rubble-containing subsoils, the majority of the natural subsoil material is not contaminated. Only low to moderate positive correlations were found between the contaminants.

Conclusions

Compared to natural soil material, rubble-containing soil materials show clearly elevated concentrations of heavy metals and B[a]P. As the most characteristic contaminants for rubble are Pb and Hg, these heavy metals should first be analyzed as proxy contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alloway B, Steinnes E (1999) Anthropogenic additions of cadmium to soils. In: McLaughlin MJ, Singh BR (eds) Cadmium in soils and plants. Kluwer Academic, Dordrecht, pp 97–123

    Chapter  Google Scholar 

  • Anttila P (1990) Characteristics of alkaline emissions, atmospheric aerosols and deposition. In: Kauppi P, Anttila P, Kenttämies K (eds) Acidification in Finland. Springer, Berlin, pp 111–134

    Chapter  Google Scholar 

  • Baek S, Field R, Goldstone M, Kirk P, Lester J, Perry R (1991) A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water Air Soil Pollut 60(3–4):279–300

    Article  CAS  Google Scholar 

  • Bergbäck B, Johansson K, Mohlander U (2001) Urban metal flows—a case study of Stockholm. Review and conclusions. Water Air Soil Pollut 1(3–4):3–24

    Article  Google Scholar 

  • Birke M, Rauch U (1994) Geochemical investigations in the urban areas of Berlin. Mineral Magazine A 58:95–96

    Article  Google Scholar 

  • Birke M, Rauch U (1997) Geochemical investigations in the Berlin metropolitan area. Z Angew Geol 43:58–65

    CAS  Google Scholar 

  • Birke M, Rauch U (2000) Urban geochemistry: investigations in the Berlin metropolitan area. Environ Geochem Health 22(3):233–248

    Article  CAS  Google Scholar 

  • Blume HP, Hellriegel T (1981) Blei-und Cadmium-Status Berliner Böden. Z Pflanzenernähr Bodenkd 144(2):181–196

    Article  CAS  Google Scholar 

  • Blume HP, Runge M (1978) Genese und Ökologie innerstädtischer Böden aus Bauschutt. Z Pflanzenernähr Bodenkd 141(6):727–740

    Article  CAS  Google Scholar 

  • Bridges E (1991) Waste materials in urban soils. Soils in the urban environment 28–46

  • Bundes Bodenschutzgesetz BBodSchG (1998) Bundesministeriums der Justiz und für Verbraucherschutz. Gesetz zum Schutz vor schädlichen Bodenveränderungen und zur Sanierung von Altlasten

  • Bundesministerium für Vertriebene, Flüchtlinge und Kriegsgeschädigte (1967) Dokumente deutscher Kriegsschäden: Evakuierte, Kriegssachgeschädigte, Währungsgechädigte: die geschichtliche und rechtliche Entwicklung, vol 4

  • Burghardt W (1994) Soils in urban and industrial environments. Z Pflanzenernähr Bodenkd 157(3):205–214

    Article  CAS  Google Scholar 

  • Cheng H, Hu Y (2011) Mercury in municipal solid waste in China and its control: a review. Environ Sci Technol 46(2):593–605

    Article  Google Scholar 

  • Chuan M, Shu G, Liu J (1996) Solubility of heavy metals in a contaminated soil: effects of redox potential and ph. Water Air Soil Pollut 90(3–4):543–556

    Article  CAS  Google Scholar 

  • Cloquet C, Carignan J, Libourel G, Sterckeman T, Perdrix E (2006) Tracing source pollution in soils using cadmium and lead isotopes. Environ Sci Technol 40(8):2525–2530

    Article  CAS  Google Scholar 

  • Collins J, Brown J, Dawson S, Marty M (1991) Risk assessment for benzo[a]pyrene. Regul Toxicol Pharmacol 13(2):170–184

    Article  CAS  Google Scholar 

  • Councell T, Duckenfield K, Landa E, Callender E (2004) Tire-wear particles as a source of zinc to the environment. Environ Sci Technol 38(15):4206–4214

    Article  CAS  Google Scholar 

  • Davis A, Shokouhian M, Ni S (2001) Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere 44(5):997–1009

    Article  CAS  Google Scholar 

  • El Khalil H, Schwartz C, El Hamiani O, Kubiniok J, Morel JL, Boularbah A (2013) Distribution of major elements and trace metals as indicators of technosolisation of urban and suburban soils. J Soils Sediments 13(3):519–530

    Article  CAS  Google Scholar 

  • Essumang D, Kowalski K, Sogaard E (2011) Levels, distribution and source characterization of polycyclic aromatic hydrocarbons (PAHs) in topsoils and roadside soils in Esbjerg, Denmark. Bull Environ Contam Toxicol 86(4):438–443

    Article  CAS  Google Scholar 

  • Fellmer B, Schneider T, Zweer R (1993) Umweltatlas Berlin, vol 1. Senatsverwaltung für Stadtentwicklung und Umweltschutz, Berlin (Germany)

  • Fichtner V (1977) Die anthropogen bedingte Umwandlung des Reliefs durch Trümmeraufschüttungen in Berlin (West) seit 1945. PhD thesis, Selbstverlag der Geographischen Instituts der Freien Universität Berlin

  • Galloway J, Thornton J, Norton S, Volchok H, McLean R (1982) Trace metals in atmospheric deposition: a review and assessment. Atmos Environ (1967) 16(7):1677–1700

    Article  CAS  Google Scholar 

  • Ge Y, Murray P, Hendershot W (2000) Trace metal speciation and bioavailability in urban soils. Environ Pollut 107(1):137–144

    Article  CAS  Google Scholar 

  • Gerstenberg J, Smettan U (2005) Erstellung von Karten zur Bewertung der Bodenfunktionen. Unveröff Bericht im Auftrag der Senatsverwaltung für Stadtentwicklung Berlin, Stand 15(09):2005

  • Gras B, Jaeger C, Sievers S (2000) Gehalte an polycyclischen aromatischen Kohlenwasserstoffen (PAK) in Oberböden Hamburgs. Umweltwissenschaften und Schadstoff-Forschung 12(2):75–82

    Article  CAS  Google Scholar 

  • Helmreich B, Hilliges R, Schriewer A, Horn H (2010) Runoff pollutants of a highly trafficked urban road—correlation analysis and seasonal influences. Chemosphere 80(9):991–997

    Article  CAS  Google Scholar 

  • Hiller D (1996) Ökologische Standorteigenschaften urban-industriell überformter Böden des Brücktorviertels in Oberhausen (Ruhrgebiet). Z Pflanzenernähr Bodenkd 159(3):241–249

    Article  CAS  Google Scholar 

  • Hiller D, Meuser H (1998a) Ausgangssubstrate der Bodenbildung in Stadtböden. Springer

  • Hiller D, Meuser H (1998b) Gefährdungspotentiale von Stadtböden. In: Hiller D. (ed) Urbane Böden. Springer, pp 93–103

  • Howard J, Dubay B, Daniels W (2013) Artifact weathering, anthropogenic microparticles and lead contamination in urban soils at former demolition sites, Detroit, Michigan. Environ Pollut 179:1–12

    Article  CAS  Google Scholar 

  • IUSS Working Group, W. R. B. (2006) World reference base for soil resources. World Soil Resources Report 103

  • Jacobs D, Clickner R, Zhou J, Viet S, Marker D, Rogers J, Zeldin D, Broene P, Friedman W (2002) The prevalence of lead-based paint hazards in US housing. Environ Health Perspect 110(10):A599

    Article  CAS  Google Scholar 

  • Jim C (1998) Physical and chemical properties of a Hong Kong roadside soil in relation to urban tree growth. Urban Ecosystems 2(2–3):171–181

    Article  Google Scholar 

  • Keiderling G (1999) Zur Enttrümmerung Berlins. Edition Luisenstadt

  • Kneib W, Braskamp A (1990) Vier Jahre Stadtbodenkartierung von Hamburg–Probleme und Ergebnisse. Mitt Dtsch Bodenkundl Gesellsch 61:97–104

    Google Scholar 

  • Krauss M, Wilcke W, Zech W (2000) Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in forest soils: depth distribution as indicator of different fate. Environ Pollut 110(1):79–88

    Article  CAS  Google Scholar 

  • Kruskal W, Wallis W (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621

    Article  Google Scholar 

  • LABO (2003) Hintergrundwerte für anorganische und organische Stoffe in Böden. Tech. rep., Länderarbeitsgemeinschaft Bodenschutz

  • Manta D, Angelone M, Neri R, Sprovieri M (2002) Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ 300(1):229–243

    Article  CAS  Google Scholar 

  • Meuser H (1993) Technogene Substrate in Stadtböden des Ruhrgebietes. Z Pflanzenernähr Bodenkd 156(2):137–142

    Article  Google Scholar 

  • Meuser H (1996a) Schadstoffpotential technogener Substrate in Böden urban-industrieller Verdichtungsräume. Z Pflanzenernähr Bodenkd 159(6):621–628

    Article  CAS  Google Scholar 

  • Meuser H (1996b) Technogene Substrate als Ausgangsgestein der Böden urban-industrieller Verdichtungsträume: Dargestellt am Beispiel der Stadt Essen. Habilitationsschrift, Institut für Pflanzenernährung und Bodenkunde, Universität Kiel

  • Meuser H (2010) Contaminated urban soils, vol 18. Springer

  • Meuser H, Blume HP (2001) Characteristics and classification of anthropogenic soils in the Osnabrück area, Germany. J Plant Nutr Soil Sci 164(4):351–358

    Article  CAS  Google Scholar 

  • Miguel E, Llamas J, Chacón E, Berg T, Larssen S, Røyset O, Vadset M (1997) Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmos Environ 31(17):2733–2740

    Article  Google Scholar 

  • Morton-Bermea O, Alvarez EH, Gaso I, Segovia N (2002) Heavy metal concentrations in surface soils from Mexico City. Bull Environ Contam Toxicol 68(3):383–388

    Article  CAS  Google Scholar 

  • Müller G (1979) Schwermetalle in den Sedimenten des Rheins-Veränderungen seit 1971. Umschau 79(24):778–783

    Google Scholar 

  • Nagamori M, Watanabe Y, Hase T, Kurata Y, Ono Y, Kawamura K (2007) A simple and convenient empirical survey method with a soil electrical conductivity meter for incineration residue-derived soil contamination. Journal of Material Cycles and Waste Management 9(1):90–98

    Article  CAS  Google Scholar 

  • Nehls T, Rokia S, Mekiffer B, Schwartz C, Wessolek G (2013) Contribution of bricks to urban soil properties. Journal of Soils and Sediments 1–10

  • Nriagu J, Pacyna J (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333(6169):134–139

    Article  CAS  Google Scholar 

  • Pichtel J, Kuroiwa K, Sawyerr H (2000) Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites. Environ Pollut 110(1):171–178

    Article  CAS  Google Scholar 

  • Rodrigues S, Pereira M, Duarte A, Ajmone-Marsan F, Davidson CM, Grčman H, Hossack I, Hursthouse AS, Ljung K, Martini C et al (2006) Mercury in urban soils: a comparison of local spatial variability in six European cities. Sci Total Environ 368(2):926–936

    Article  CAS  Google Scholar 

  • Rossiter D (2007) Classification of urban and industrial soils in the world reference base for soil resources (5 pp). J Soils Sediments 7(2):96–100

    Article  CAS  Google Scholar 

  • Ruokojärvi P, Aatamila M, Ruuskanen J (2000) Toxic chlorinated and polyaromatic hydrocarbons in simulated house fires. Chemosphere 41(6):825–828

    Article  Google Scholar 

  • Schleuß U, Wu Q, Blume HP (1998) Variability of soils in urban and periurban areas in northern Germany. Catena 33(3):255–270

    Article  Google Scholar 

  • Shaw R, Wilson M, Reinhardt L, Isleib J, Gilkes R, Prakongkep N (2010) Geochemistry of artifactual coarse fragment types from selected New York city soils. In: Proceedings of the 19th World Congress of Soil Science

  • Short J, Fanning D, McIntosh M, Foss J, Patterson J (1986) Soils of the mall in Washington, DC: I. statistical summary of properties. Soil Sci Soc Am J 50(3):699–705

    Article  Google Scholar 

  • Smettan U, Mekiffer B (1996) Kontamination von Trümmerschuttböden mit PAK. Z Pflanzenernähr Bodenkd 159(2):169–175

    Article  CAS  Google Scholar 

  • Smettan U, Ehrig C, Cersrenberg J (1993) Belastung von Boden mit As, Pb und PAK in zwei Berliner Bezirken. In: Mitteilgn Dtsch Bodenkdl Gesellsch., vol 72, pp 1259–1262

  • Spearman C (1910) Correlation calculated from faulty data. Br J Psychol 3(3):271–295

    Google Scholar 

  • Statistisches Landesamt Berlin (1963) Geschäftszeichen stgt. 1a −0392-1

  • Umweltatlas Berlin (2008) Umweltatlas Berlin, Senatsverwaltung für Stadtentwicklung, Berlin. Tech. rep., Senatsverwaltung für Stadtentwicklung, Berlin

  • Wessolek G, Kluge B, Toland A, Nehls T, Klingelmann E, Rim Y, Mekiffer B, Trinks S (2011) Urban soils in the vadose zone. In: Endlicher W (ed) Perspectives in urban ecology: studies of ecosystems and interactions between humans and nature in the metropolis of Berlin. Springer, Dordrecht, pp 89–133

    Chapter  Google Scholar 

  • Wobst M, Wichmann H, Bahadir M (1999) Surface contamination with PASH, PAH and PCDD/F after fire accidents in private residences. Chemosphere 38(7):1685–1691

    Article  CAS  Google Scholar 

  • Wolff R (1996) Typische Profile Hamburger Böden. In: Urbaner Bodenschutz, Springer, pp 129–143

Download references

Acknowledgments

Our thanks go to the German Science Foundation DFG, which has supported our project (We 1125/26-1) and the Berlin Senate Department for Urban Development and the Environment for providing the soil survey data sets. We would also like to thank the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Abel.

Additional information

Responsible editor: Przemysław Charzyński

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abel, S., Nehls, T., Mekiffer, B. et al. Heavy metals and benzo[a]pyrene in soils from construction and demolition rubble. J Soils Sediments 15, 1771–1780 (2015). https://doi.org/10.1007/s11368-014-0959-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-014-0959-4

Keywords

Navigation