Skip to main content

Advertisement

Log in

Environmental and energy assessment of the substitution of chemical fertilizers for industrial wastes of ethanol production in sugarcane cultivation in Brazil

  • LIFE CYCLE ASSESSMENT: A TOOL FOR INNOVATION IN LATIN AMERICA
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Vinasse and filter cake are residues of bioethanol processing that are used to be recycled as fertilizers in sugarcane plantation. Studies related to the environmental dimension on this practice are concerned only with the effects on water and soil. The present study examines the systemic effects of replacing chemical fertilizers with vinasse and filter cake on the environmental performance of ethanol, via life cycle assessment (LCA).

Methods

The analysis was carried out by comparing various scenarios structured from two control variables: crop management techniques (manual and mechanized harvesting) and source of nutrients (for supplying the nutritional needs of sugarcane crops): chemical fertilizers, chemical fertilizers + vinasse, and chemical fertilizer + vinasse + filter cake. Impact assessment was carried out in terms of primary energy demand, climate change, terrestrial acidification, freshwater eutrophication, human toxicity, and terrestrial ecotoxicity. LCA has been applied according to both attributional and consequential perspectives. Moreover, a sensitivity analysis was performed in order to verify the effects of the varying amounts of nitrogen (N), phosphorus (P), and potassium (K) in the composition of vinasse on the results obtained for the impact profile.

Results and discussion

From the attributional LCA perspective, the most expressive contributions regarding primary energy demand occurred in terms of depletion of non-renewable fossils. Replacing chemical fertilizers with vinasse and filter cake was beneficial for the environmental performance of ethanol as it reduces climate change, terrestrial acidification, and human toxicity impacts and sustains freshwater eutrophication and terrestrial ecotoxicity unaltered in relation to scenarios using only fertilizers. In terms of consequential LCA, ethanol’s environmental performance is influenced by the inclusion of the production of calcium fluorite to compensate the hexafluorosilicic acid deficit occurring in conjunction to the decrease of phosphate fertilizer and is compensated by the benefits provided by the general reduced consumption of chemical fertilizers for most of the impact categories. The exception occurred for primary energy demand.

Conclusions

The reuse of residues from bioethanol production—vinasse and filter cake—as primary nutrient suppliers for the cultivation of sugarcane instead of chemical fertilizers is a valid practice that improves the environmental performance of ethanol, even if it is analyzed under a consequential LCA perspective. The transport of these inputs to the field must be managed, however, in order to minimize primary energy demand and climate change impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ABIQUIM—Associação Brasileira da Indústria Química (2015) Guia da Indústria Química Brasileira. São Paulo. 755 p (in Portuguese)

  • Bonomi A et al. (2012) The virtual sugarcane biorefinery (VSB)—report 2011. CTBE/CNPEM—Brazilian Bioethanol Science and Technology Laboratory/Brazilian Center of Research in Energy and Materials. Campinas, 124 pp. http://ctbe.cnpem.br/wp-content/uploads/2014/07/vsb-report-2011.pdf

  • Botelho RG, Christofoletti CA, Correira JE, Tornisielo VL (2014) Environmental implications of using waste from sugarcane industry in agriculture. In: Webb E (ed) Sugarcane: production, consumption and agricultural management systems. Nova Science Publishers Inc, New York, p 397

    Google Scholar 

  • Brazil (1975) Administrative Rule no. 635 of December 26, 1975 from Ministry of Health approves regulations and standards on water fluoridation of public water supplies for human consumption

  • Brazil (1978) Ordinance no. 323 of November 19, 1978 from Interior Ministry lays down the rules and general conditions for final disposal of vinasse into water bodies

  • Brazil (1980) Ordinance no. 158 of November 3, 1980 from Interior Ministry improves and enlarges the content of Ordinance no. 323/1978 regarding condition for final disposal of vinasse into water bodies

  • Cavalcante VS et al (2015) Potassium nutrition in sugar cane ratoons cultured in red latosol with a conservationist system. J Plant Nutr. doi:10.1080/01904167.2015.1009111

    Google Scholar 

  • Cavalett O et al (2012) Environmental and economic assessment of sugarcane first generation biorefineries in Brazil. Clean Techn Environ Policy 14:399–410

    Article  CAS  Google Scholar 

  • Cavalett O, Chagas MF, Seabra JEA, Bonomi A (2013) Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods. Int J Life Cycle Assess 18:647–658

    Article  CAS  Google Scholar 

  • Cazetta ML, Celligoi MAPC (2005) Use of sugar cane molasses and vinasse for proteic and lipidic biomass production by yeast and bacteria. Semina: Ciências Exatas Tecnol 26(2):105–112 (in Portuguese)

    Article  CAS  Google Scholar 

  • CGEE—Centro de Gestão e Estudos Estratégicos (2008) Bioetanol de cana-de-açúcar: energia para o desenvolvimento sustentável. BNDES. Rio de Janeiro 316 p (in Portuguese)

  • Christofoletti CA, Escher JP, Correia JE, Marinho JFU, Fontanetti CS (2013) Sugarcane vinasse: environmental implications of its use. Waste Manag 33:2752–2761

    Article  CAS  Google Scholar 

  • Cortez LAB (2010) Bioetanol de Cana-de-açúcar: P&D Para a Produtividade e Sustentabilidade. 1st Ed. São Paulo: Blücher. 954 p (in Portuguese)

  • Costa FJCB et al (1986) Utilization of vinasse effluents from an anaerobic reactor. Water Sci Technol 18:135–141

    Google Scholar 

  • DNPM—National Department of Mineral Production (2014) Mineral summary—2014. 152 p (in Portuguese) http://www.dnpm.gov.br/dnpm/sumarios/sumario-mineral-2014

  • Ekvall T, Weidema BP (2004) System boundaries and input data in consequential life cycle inventory analysis. Int J Life Cycle Assess 9(3):161–171

    Article  Google Scholar 

  • EPE—Energy Research Enterprise (2014) Brazilian energy balance 2014 year 2013 CDU 620.9:553.04(81). Ministry of Mines and Energy. Brasilia–DF (in Portuguese)

  • Forster P et al (2007) Changes in atmospheric constituents and in radiative forcing, chapter 2. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Franco HCJ (2008) Eficiência agronômica da adubação nitrogenada de cana planta. Tese (Doutorado). Escola Superior de Agricultura Luiz de Queiros. Universidade de São Paulo. 127p. Piracicaba. (in Portuguese)

  • Fredo CE et al. (2014) Mecanização na colheita da cana-de-açúcar paulista supera 80% na safra 2012/13. Análises e Indicadores do Agronegócio, São Paulo, 9 (7). http://www.iea.sp.gov.br/out/LerTexto.php?codTexto=13463>

  • Frischknecht R et al. (2007) Implementation of life cycle impact assessment methods: data v2.0. Ecoinvent report no. 3, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland. Online version under: www.ecoinvent.ch

  • Fuess LT, Garcia ML (2015) Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production. J Environ Manag 162:102–114

    Article  CAS  Google Scholar 

  • FUNASA—National Health Foundation (2012) Fluoridation of drinking water manual. Brasília. 72 p (in Portuguese) http://www.funasa.gov.br/site/wp-content/files_mf/mnl_fluoretacao_2.pdf

  • García CA et al (2011) Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico. Appl Energy 88:2088–2097

    Article  Google Scholar 

  • Goedkoop M et al. (2013) Description of the ReCiPe methodology for life assessment impact assessment. Available from: http://www.lcia-recipe.net—downloads ReCiPe Main Report Revised 13-07-2012

  • GREET (2010) Greenhouse gases, regulated emissions, and energy use in transportation. Version 1.8d. Argonne, IL: Argonne National Laboratory

  • Guerra JP et al (2014) Comparative analysis of electricity cogeneration scenarios in sugarcane production by LCA. Int J Life Cycle Assess 19:814–25

    Article  Google Scholar 

  • Gupta AK, Hall CAS (2011) A review of the past and current state of EROI data. Sustain 3:1796–1809

    Article  Google Scholar 

  • Hall CAS (2011) Introduction to special issue on new studies in EROI (energy return on investment). Sustain 3:1773–1777

    Article  Google Scholar 

  • Hansen APH, Silva GA, Kulay L (2015) Evaluation of the environmental performance of alternatives for polystyrene production in Brazil. Sci Total Environ 532:655–668

    Article  CAS  Google Scholar 

  • Hauschild MZ et al (2013) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18:683–697

    Article  CAS  Google Scholar 

  • Heijungs R, Suh S (2002) The computational structure of life cycle assessment. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Higa M, Calderani DA, Lopes KS (2014) Electric power generation from anaerobic digestion of the sugar cane vinasse—case study. Revista Engenharia e Tecnol 6(1):83–91 (in Portuguese)

    Google Scholar 

  • Huijbregts MAJ, Van Zelm R (2009) Ecotoxicity and human toxicity. Chapter 7. In: Goedkoop M, Heijungs R, Huijbregts MAJ, Struijs J, De Schryver A, Van Zelm R (eds) ReCiPe 2008. A life cycle impact assessment method which comprises harmonized category indicators at the midpoint and the endpoint level. Report I: characterization factors, first edition. Available at: http://www.lcia-recipe.net (accessed on Dec 2015)

  • IEA (International Energy Agency) (2015) Energy statistics of OECD countries 2015, OECD/IEA, Paris. doi:10.1787/energy_stats_oecd-2015-en

  • IDEA—Instituto Desenvolvimento Agroindustrial (2012) Indicadores de desempenho da agroindústria canavieira—safras 2010/11 e 2011/12. Grupo IDEA, Ribeirão Preto (SP), 2012. 98 p (in Portuguese)

  • Intergovernmental Panel on Climate Change (IPCC) (2006) Guidelines for national greenhouse gas inventories, vol. 4. Agriculture, forestry and other land use

  • ISO—International Organization for Standardization (2006) ISO 14044. Environmental management–life cycle assessment–requirements and guidelines

  • JRC—Joint Research Centre. Institute for Environment and Sustainability (2011) International reference life cycle data system (ILCD) handbook. Recommendations for life cycle impact assessment in the European context. 1st ed. Report EUR 24571 EN 2011. Available at: http://lct.jrc.ec.europa.eu

  • Jungbluth N, Tuchschmid M (2007) Photovoltaics. In: Dones R et al. (ed) Sachbilanzen von Energiesystemen: Grundlagen für ökologischen Vergleich von Energiesystemen un den Einbezug Energiesystemen in Ökobilanzen für die Schweiz, Ecoinvent report n.6-XII, Swiss Centre for Life Cycle Inventories, Düberdorf, CH, retrieved from www.ecoinvent.org

  • Kongshaug G et al. (2005) Phosphate fertilizers. In Lead. In: Ullmann’s encyclopedia of industrial chemistry, 2005, A19. Wiley-VCH, Weinheim, pp 18548–18591

  • Kosaric N et al (2005) Ethanol. In Dithiocarbamic acid and derivatives to ethanol. In: Ullmann’s encyclopedia of industrial chemistry, 2005, A9. Wiley-VCH, Weinheim, pp 8762–8817

  • López-Rivera A, López-López A, Vallejo-Rodríguez R, León-Becerril E (2015) Effect of the organic loading rate in the stillage treatment in a constructed wetland with Canna indica. Environ Prog Sustain Energy. doi:10.1002/ep.12249

    Google Scholar 

  • Macedo IC, Seabra JEA, Silva JEAR (2008) Greenhouse gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass Bioenerg. doi:10.1016/j.biombioe.2007.12.006

    Google Scholar 

  • MAPA—Ministry of Agriculture, Livestock and Supply (2015) Statistical yearbook of agrienergy 2014. Secretariat of Production and Agrienergy. CDU 633.61 Brasilia–DF (in Portuguese)

  • Mariano AP, Crivelaro SHR, de Angelis DF, Bonotto DM (2009) The use of vinasse as an amendment to ex-situ bioremediation of soil and groundwater contaminated with diesel oil. Braz Arch Biol Technol 52(4):1043–1055

    Article  CAS  Google Scholar 

  • Marinho JFU, Correia JE, Marcato ACC, Pedro-Escher J, Fontanetti CS (2014) Sugar cane vinasse in water bodies: impact assessed by liver histopathology in tilapia. Ecotoxicol Environ Saf 110:239–245

    Article  CAS  Google Scholar 

  • Martins M et al (2009) Perdas de solo e nutrientes por erosão num argissolo com resíduos vegetais de cana-de-açúcar. Eng Agríc 29(1):8–18 (in Portuguese)

    Article  Google Scholar 

  • MDIC—Ministry of Development, Industry and Foreign Trade (2015) Aliceweb system. Available at: aliceweb2.mdic.gov.br

  • Moraes BS et al (2014) Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: profit or expense? Appl Energy 113:825–835

    Article  CAS  Google Scholar 

  • Nemecek T, Kägi T (2007) Life cycle inventories of Swiss and European agricultural production system final report Ecoinvent v2.0 N 15a. Agroscope Reckenholz-Taenikon Research Station ART, Swiss Centre for Life Cycle Inventories, Zurich and Dübendorf, CH, retrieved from www.ecoinvent.org

  • Nemecek T, Schnetzer J (2011) Methods of assessment of direct field emissions for LCIs of agricultural production systems. Agroscope Reckenholz-Tänikon Research Station ART. Zurich 34 p

  • Nicochelli LM, Nascentes R, Lima EBNR, Soares FSC (2012) Sorção de potássio em amostras de solo submetidas à aplicação de vinhaça. Rev Bras Eng Agríc Ambiental 16(7):754–760, Portuguese

    Article  Google Scholar 

  • Novais RF, Smyth TJ (1999) Fósforo em solo e planta em condições tropicais. Universidade Federal de Viçosa. 399 p. Viçosa, MG (in Portuguese)

  • Oliveira WS, Brito MEB, Alves RAB, Souza AS, Silva EG (2014) Sugarcane crop under vinasse fertirrigation and mineral fertilization. Rev Verde 9(1):1–5

    Google Scholar 

  • Ometto AR, Hauschild MZ, Roma WNL (2009) Lifecycle assessment of fuel ethanol from sugarcane in Brazil. Int J Life Cycle Assess 14:236–247

    Article  CAS  Google Scholar 

  • Ortegón GP, Arboleda FM, Candela L, Tamoh K, Valdes-Abellan J (2016) Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia). Sci Total Environ 539:410–419

    Article  Google Scholar 

  • Pina JC, Bono JAM, Oiveira AKM, Rufino RS, Amorim DO (2015) Organic residues on rooting and yield of sugarcane in Typic Quartzipsamments soil. Rev Bras Eng Agríc Ambiental 19(7):650–655

    Article  Google Scholar 

  • Raij B van et al. (eds) (1997) Recomendações de adubação e calagem para o Estado de São Paulo. 2 Ed. Campinas: IAC, 1997. (Boletim Técnico, 100) (in Portuguese)

  • Rocha MH, Lora EES, Venturini OJ (2008) Life cycle analysis of different alternatives for the treatment and disposal of ethanol vinasse. Sugar Ind/ Zuckerindustrie 133(2):88–93

    CAS  Google Scholar 

  • Rodrigues BN, Almeida FS (2011) Guia de herbicidas. 6 Ed. Londrina, 2011, 697 p (in Portuguese)

  • Rodrigues FA Jr, Magalhães PSG, Franco HCJ (2013) Soil attributes and leaf nitrogen estimating sugar cane quality parameters: brix, pol and fibre. Precis Agric 14(3):270–279

    Article  Google Scholar 

  • Rossetto R, Dias FLF (2005) Nutrição e adubação da cana-de-açúcar: indagações e reflexões. Inf. Agron., 110:1–11. Potafos, Encarte Técnico (in Portuguese)

  • Santos RER, Santos IA (2009) Análise da viabilidade energética da produção de etanol em microdestilarias. 4th International Conference of Bioenergy. Curitiba. http://www.porthuseventos.com.br/site/eventos/2009/eventobioenergia.com.br/congresso/br/tecnica/RodolfoSantos.pdf. (in Portuguese)

  • Santos DH, Silva MA, Tiritan CS, Foloni JSS, Echer FR (2011) Qualidade tecnológica da cana-de-açúcar sob adubação com torta de filtro enriquecida com fosfato solúvel. Rev Bras Eng Agríc Ambiental 15(5):443–449

    Article  Google Scholar 

  • Santos DH, Silva MA, Tiritan CS, Crusciol CAC (2014) The effect of filter cakes enriched with soluble phosphorus used as a fertilizer on the sugarcane ratoons. Acta Sci Agron 36(3):365–372

    Article  Google Scholar 

  • Seabra JEA, Macedo IC, Chum HL, Faroni CE, Sarto CA (2011) Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use. Biofuels Bioprod Biorefin 5:519–532

    Article  CAS  Google Scholar 

  • SeaRates (2013) Distance and time [map]. Scale undetermined; generated by SeaRates LP; using Google Maps. 2013. Available from: http://www.searates.com/reference/portdistance

  • Silva FIC, Garcia A (2009) Harvest mechanics and manual of the sugarcane: description and analysis. Nucleus 6(1):233–248

    Google Scholar 

  • Silva GA, Kulay L (2003) Application of life cycle assessment to the LCA case studies single superphosphate production. Int J Life Cycle Assess 8:209–214

    Article  CAS  Google Scholar 

  • Silva DAL et al (2015) Life cycle assessment of offset paper production in Brazil: hotspots and cleaner production alternatives. J Clean Prod 93:222–233

    Article  CAS  Google Scholar 

  • Smeets E et al (2008) The sustainability of Brazilian ethanol—an assessment of the possibilities of certified production. Biomass Bioenerg 32:781–813

    Article  Google Scholar 

  • Soobadar A (2014) Application of vinasse to sugarcane. In: Web E (ed) Sugarcane: production, consumption, and agricultural management system, vol 1st ed. Nova Science Publisher, New York, pp 331–359

    Google Scholar 

  • Souza TS, Hencklein FA, Angelis DF, Fontanetti CS (2013) Clastogenicity of landfarming soil treated with sugar cane vinasse. Environ Monit Assess 185:1627–1636

    Article  CAS  Google Scholar 

  • Stipp SR, Prochnow LI (2008) Maximização da eficiência e minimização de impactos ambientais da adubação nitrogenada. Inf Agron 124:1–7 (in Portuguese)

    Google Scholar 

  • Struijs J et al. (2009) Aquatic eutrophication. Chapter 6. In: Goedkoop M, Heijungs R, Huijbregts MAJ, De Schryver A, Struijs J, Van Zelm R (eds) ReCiPe 2008: a life cycle impact assessment method which comprises harmonized category indicators at the midpoint and the endpoint level. Report I: characterization, first edition, January 6th, 2009. Available at: http://www.lcia-recipe.net (accessed on Dec 2015)

  • Sugawara ET (2012) Comparação dos desempenhos ambientais do B5 etílico de soja e do óleo diesel, por meio da avaliação do ciclo de vida (ACV) Doctoral dissertation, University of São Paulo, São Paulo, Brasil http://www.teses.usp.br/teses/disponiveis/3/3137/tde-16072013-122953/pt-br.php. Acessed: 15th Feb 2015 (in Portuguese)

  • Suh S et al (2010) Generalized make and use framework for allocation in life cycle assessment. J In Ecol 14(2):335–353

    Article  Google Scholar 

  • Sydney EB et al (2014) Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source. Bioresource Technol 159:380–386

    Article  CAS  Google Scholar 

  • Thiesen J et al (2008) Rebound effects of price differences. Int J Life Cycle Assess 13(2):104–114

    Article  Google Scholar 

  • Tyedmers P (2000) Salmon and sustainability: the biophysical cost of producing salmon through the commercial salmon fishery and the intensive salmon culture industry. PhD Dissertation. Vancouver: University of British Columbia

  • Van Zelm R et al (2007) Time horizon dependent characterization factors for acidification in life-cycle assessment based on forest plant species occurrence in Europe. Environ Sci Technol 41(3):922–927

    Article  Google Scholar 

  • Vázquez-Rowe I, Moreira MT, Feijoo G (2014) Edible protein energy return on investment ratio (ep-EROI) for Spanish seafood products. Ambio 43(3):381–394

    Article  Google Scholar 

  • Wilkie AC, Riedesel KJ, Owens JM (2000) Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenerg 19(2):63–102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Luiz Kulay would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES) for the support provided for project CAPES/FCT 2012, no. 350/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Kulay.

Additional information

Responsible editor: Isabel Quispe

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, C.C.S., Nogueira, A.R. & Kulay, L. Environmental and energy assessment of the substitution of chemical fertilizers for industrial wastes of ethanol production in sugarcane cultivation in Brazil. Int J Life Cycle Assess 22, 628–643 (2017). https://doi.org/10.1007/s11367-016-1074-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-016-1074-0

Keywords

Navigation