Skip to main content
Log in

Network analyses unveil ageing-associated pathways evolutionarily conserved from fungi to animals

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

The genetic roots of the diverse paces and shapes of ageing and of the large variations in longevity observed across the tree of life are poorly understood. Indeed, pathways associated with ageing/longevity are incompletely known, both in terms of their constitutive genes/proteins and of their molecular interactions. Moreover, there is limited overlap between the genes constituting these pathways across mammals. Yet, dedicated comparative analyses might still unravel evolutionarily conserved, important pathways associated with longevity or ageing. Here, we used an original strategy with a double evolutionary and systemic focus to analyse protein interactions associated with ageing or longevity during the evolution of five species of Opisthokonta. We ranked these proteins and interactions based on their evolutionary conservation and centrality in past and present protein–protein interaction (PPI) networks, providing a big systemic picture of the evolution of ageing and longevity pathways that identified which pathways emerged in which Opisthokonta lineages, were conserved, and/or central. We confirmed that longevity/ageing-associated proteins (LAPs), be they pro- or anti-longevity, are highly central in extant PPI, consistently with the antagonistic pleiotropy theory of ageing, and identified key antagonistic regulators of ageing/longevity, 52 of which with homologues in humans. While some highly central LAPs were evolutionarily conserved for over a billion years, we report a clear transition in the functionally important components of ageing/longevity within bilaterians. We also predicted 487 novel evolutionarily conserved LAPs in humans, 54% of which are more central than mTOR, and 138 of which are druggable, defining new potential targets for anti-ageing treatments in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data underlying this article are available in the article and in its online supplementary material.

References

  1. Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T, Diana E, Lehmann G, Toren D, Wang J, et al. Human ageing genomic resources: new and updated databases. Nucleic Acids Res. 2018;46:D1083–90.

    Article  CAS  Google Scholar 

  2. Baudisch A, Vaupel JW. Getting to the Root of Aging. Science. 2012;338:618–9.

    Article  CAS  Google Scholar 

  3. Jones OR, Scheuerlein A, Salguero-Gómez R, Camarda CG, Schaible R, Casper BB, Dahlgren JP, Ehrlén J, García MB, Menges ES, et al. Diversity of ageing across the tree of life. Nature. 2014;505:169–73.

    Article  CAS  Google Scholar 

  4. da Silva R, Conde DA, Baudisch A, Colchero F. Slow and negligible senescence among testudines challenges evolutionary theories of senescence. Science. 2022;376:1466–70.

    Article  Google Scholar 

  5. Treaster S, Karasik D, Harris MP. Footprints in the sand: deep taxonomic comparisons in vertebrate genomics to unveil the genetic programs of human longevity. Front Genet. 2021;12:678073.

    Article  Google Scholar 

  6. Kenyon CJ. The genetics of ageing. Nature. 2010;464:504–12.

    Article  CAS  Google Scholar 

  7. Doherty A, de Magalhães JP. Has gene duplication impacted the evolution of Eutherian longevity? Aging Cell. 2016;15:978–80.

    Article  CAS  Google Scholar 

  8. Farré X, Molina R, Barteri F, Timmers PRHJ, Joshi PK, Oliva B, Acosta S, Esteve-Altava B, Navarro A, Muntané G. Comparative analysis of mammal genomes unveils key genomic variability for human life span. Mol Biol Evol. 2021;38:4948–61.

    Article  Google Scholar 

  9. Foley NM, Hughes GM, Huang Z, Clarke M, Jebb D, Whelan CV, Petit EJ, Touzalin F, Farcy O, Jones G, et al. Growing old, yet staying young: the role of telomeres in bats’ exceptional longevity. Sci Adv. 2018;4:eaao0926.

    Article  Google Scholar 

  10. Gorbunova V, Seluanov A, Zhang Z, Gladyshev VN, Vijg J. Comparative genetics of longevity and cancer: insights from long-lived rodents. Nat Rev Genet. 2014;15:531–40.

    Article  CAS  Google Scholar 

  11. Huang Z, Whelan CV, Foley NM, Jebb D, Touzalin F, Petit EJ, Puechmaille SJ, Teeling EC. Longitudinal comparative transcriptomics reveals unique mechanisms underlying extended healthspan in bats. Nat Ecol Evol. 2019;3:1110–20.

    Article  Google Scholar 

  12. Irving AT, Ahn M, Goh G, Anderson DE, Wang L-F. Lessons from the host defences of bats, a unique viral reservoir. Nature. 2021;589:363–70.

    Article  CAS  Google Scholar 

  13. Kacprzyk J, Locatelli AG, Hughes GM, Huang Z, Clarke M, Gorbunova V, Sacchi C, Stewart GS, Teeling EC. Evolution of mammalian longevity: age-related increase in autophagy in bats compared to other mammals. Aging. 2021;13:7998–8025.

    Article  CAS  Google Scholar 

  14. Keane M, Semeiks J, Webb AE, Li YI, Quesada V, Craig T, Madsen LB, van Dam S, Brawand D, Marques PI, et al. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep. 2015;10:112–22.

    Article  CAS  Google Scholar 

  15. Kolora SRR, Owens GL, Vazquez JM, Stubbs A, Chatla K, Jainese C, Seeto K, McCrea M, Sandel MW, Vianna JA, et al. Origins and evolution of extreme life span in Pacific Ocean rockfishes. Science. 2021;374:842–7.

    Article  CAS  Google Scholar 

  16. Li Y, de Magalhães JP. Accelerated protein evolution analysis reveals genes and pathways associated with the evolution of mammalian longevity. Age Dordr Neth. 2013;35:301–14.

    Article  CAS  Google Scholar 

  17. Lu JY, Simon M, Zhao Y, Ablaeva J, Corson N, Choi Y, Yamada KYH, Schork NJ, Hood WR, Hill GE, et al. Comparative transcriptomics reveals circadian and pluripotency networks as two pillars of longevity regulation. Cell Metab. 2022;34:836-856.e5.

    Article  CAS  Google Scholar 

  18. Orkin JD, Montague MJ, Tejada-Martinez D, de Manuel M, Del Campo J, Cheves Hernandez S, Di Fiore A, Fontsere C, Hodgson JA, Janiak MC, et al. The genomics of ecological flexibility, large brains, and long lives in capuchin monkeys revealed with fecalFACS. Proc Natl Acad Sci U S A. 2021;118:e2010632118.

    Article  CAS  Google Scholar 

  19. Sahm A, Bens M, Szafranski K, Holtze S, Groth M, Görlach M, Calkhoven C, Müller C, Schwab M, Kraus J, et al. Long-lived rodents reveal signatures of positive selection in genes associated with lifespan. Barsh GS, editor. PLOS Genet. 2018;14:e1007272.

  20. Tejada-Martinez D, Avelar RA, Lopes I, Zhang B, Novoa G, de Magalhães JP, Trizzino M. Positive selection and enhancer evolution shaped lifespan and body mass in great apes. Mol Biol Evol. 2022;39:msab369.

    Article  CAS  Google Scholar 

  21. Toren D, Kulaga A, Jethva M, Rubin E, Snezhkina AV, Kudryavtseva AV, Nowicki D, Tacutu R, Moskalev AA, Fraifeld VE. Gray whale transcriptome reveals longevity adaptations associated with DNA repair and ubiquitination. Aging Cell. 2020;19:e13158.

    Article  Google Scholar 

  22. Lunghi E, Bilandžija H. Longevity in cave animals. Front Ecol Evol. 2022;10:874123.

    Article  Google Scholar 

  23. Keller L, Genoud M. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature. 1997;389:958–60.

    Article  CAS  Google Scholar 

  24. Singh PP, Demmitt BA, Nath RD, Brunet A. The genetics of aging: a vertebrate perspective. Cell. 2019;177:200–20.

    Article  CAS  Google Scholar 

  25. Medawar PB. An unsolved problem of biology. College, 1952

  26. Williams GC. Pleiotropy, natural selection, and the evolution of senescence. Evolution. 1957;11:398–411.

    Article  Google Scholar 

  27. Kirkwood T, Holliday R. The evolution of ageing and longevity. Proc R Soc Lond B Biol Sci. 1979;205:531–46.

    Article  CAS  Google Scholar 

  28. Johnson AA, Shokhirev MN, Shoshitaishvili B. Revamping the evolutionary theories of aging. Ageing Res Rev. 2019;55:100947.

    Article  Google Scholar 

  29. Kirkwood TBL. The origins of human ageing.Evans JG, Holliday R, Kirkwood TBL, Laslett P, Tyler L, editors. Philos Trans R Soc Lond B Biol Sci. 1997;352:1765–72.

    Article  CAS  Google Scholar 

  30. Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148:46–57.

    Article  CAS  Google Scholar 

  31. Muntané G, Farré X, Rodríguez JA, Pegueroles C, Hughes DA, de Magalhães JP, Gabaldón T, Navarro A. Biological processes modulating longevity across primates: a phylogenetic genome-phenome analysis.Wray G, editor. Mol Biol Evol. 2018;35:1990–2004.

    Article  Google Scholar 

  32. Ferrarini L, Bertelli L, Feala J, McCulloch AD, Paternostro G. A more efficient search strategy for aging genes based on connectivity. Bioinforma Oxf Engl. 2005;21:338–48.

    Article  CAS  Google Scholar 

  33. Fortney K, Kotlyar M, Jurisica I. Inferring the functions of longevity genes with modular subnetwork biomarkers of Caenorhabditis elegans aging. Genome Biol. 2010;11:R13.

    Article  Google Scholar 

  34. Promislow DEL. Protein networks, pleiotropy and the evolution of senescence. Proc Biol Sci. 2004;271:1225–34.

    Article  CAS  Google Scholar 

  35. Witten TM, Bonchev D. Predicting aging/longevity-related genes in the nematode Caenorhabditis elegans. Chem Biodivers. 2007;4:2639–55.

    Article  CAS  Google Scholar 

  36. Papadopoli D, Boulay K, Kazak L, Pollak M, Mallette F, Topisirovic I, Hulea L. mTOR as a central regulator of lifespan and aging. F1000Res 2019;8:998.

  37. Templeman NM, Murphy CT. Regulation of reproduction and longevity by nutrient-sensing pathways. J Cell Biol. 2018;217:93–106.

    Article  CAS  Google Scholar 

  38. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.

    Article  CAS  Google Scholar 

  39. Bell R, Hubbard A, Chettier R, Chen D, Miller JP, Kapahi P, Tarnopolsky M, Sahasrabuhde S, Melov S, Hughes RE. A human protein interaction network shows conservation of aging processes between human and invertebrate species. Kim SK, editor. PLoS Genet. 2009:e1000414

  40. Budovsky A, Abramovich A, Cohen R, Chalifa-Caspi V, Fraifeld V. Longevity network: construction and implications. Mech Ageing Dev. 2007;128:117–24.

    Article  CAS  Google Scholar 

  41. Wang J, Zhang S, Wang Y, Chen L, Zhang X-S. Disease-aging network reveals significant roles of aging genes in connecting genetic diseases. Searls DB, editor. PLoS Comput Biol 2009;5:e1000521.

  42. Zhang Q, Nogales-Cadenas R, Lin J-R, Zhang W, Cai Y, Vijg J, Zhang ZD. Systems-level analysis of human aging genes shed new light on mechanisms of aging. Hum Mol Genet 2016:ddw145.

  43. Yanai H, Budovsky A, Barzilay T, Tacutu R, Fraifeld VE. Wide-scale comparative analysis of longevity genes and interventions. Aging Cell. 2017;16:1267–75.

    Article  CAS  Google Scholar 

  44. Fernandes M, Wan C, Tacutu R, Barardo D, Rajput A, Wang J, Thoppil H, Thornton D, Yang C, Freitas A, et al. Systematic analysis of the gerontome reveals links between aging and age-related diseases. Hum Mol Genet. 2016;25:4804–18.

    CAS  Google Scholar 

  45. Tacutu R, Budovsky A, Yanai H, Fraifeld VE. Molecular links between cellular senescence, longevity and age-related diseases – a systems biology perspective. Aging. 2011;3:1178–91.

    Article  CAS  Google Scholar 

  46. Budovsky A, Tacutu R, Yanai H, Abramovich A, Wolfson M, Fraifeld V. Common gene signature of cancer and longevity. Mech Ageing Dev. 2009;130:33–9.

    Article  CAS  Google Scholar 

  47. Avelar RA, Ortega JG, Tacutu R, Tyler EJ, Bennett D, Binetti P, Budovsky A, Chatsirisupachai K, Johnson E, Murray A, et al. A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biol. 2020;21:91.

    Article  CAS  Google Scholar 

  48. de Magalhães JP, Toussaint O. GenAge: a genomic and proteomic network map of human ageing. FEBS Lett. 2004;571:243–7.

    Article  Google Scholar 

  49. Managbanag JR, Witten TM, Bonchev D, Fox LA, Tsuchiya M, Kennedy BK, Kaeberlein M. Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity. PLoS ONE. 2008;3:e3802.

    Article  CAS  Google Scholar 

  50. Tacutu R, Shore DE, Budovsky A, de Magalhães JP, Ruvkun G, Fraifeld VE, Curran SP. Prediction of C. elegans longevity genes by human and worm longevity networks. Suh Y, editor. PLoS One 2012;7:e48282.

  51. Wuttke D, Connor R, Vora C, Craig T, Li Y, Wood S, Vasieva O, Shmookler Reis R, Tang F, de Magalhães JP. Dissecting the gene network of dietary restriction to identify evolutionarily conserved pathways and new functional genes.Kim SK, editor. PLoS Genet. 2012;8:e1002834.

  52. Watson AK, Habib M, Bapteste E. Phylosystemics: merging phylogenomics, systems biology, and ecology to study evolution. Trends Microbiol. 2020;28:176–90.

    Article  CAS  Google Scholar 

  53. Bapteste E, Huneman P. Towards a dynamic interaction network of life to unify and expand the evolutionary theory. BMC Biol. 2018;16:56.

    Article  Google Scholar 

  54. Blagosklonny MV. Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition. Cell Cycle. 2006;5:2087–102.

    Article  CAS  Google Scholar 

  55. Gems D. The hyperfunction theory: an emerging paradigm for the biology of aging. Ageing Res Rev. 2022;74:101557.

    Article  Google Scholar 

  56. Ito T, Igaki T. Dissecting cellular senescence and SASP in Drosophila. Inflamm Regen. 2016;36:25.

    Article  Google Scholar 

  57. Kopacz A, Kloska D, Targosz-Korecka M, Zapotoczny B, Cysewski D, Personnic N, Werner E, Hajduk K, Jozkowicz A, Grochot-Przeczek A. Keap1 governs ageing-induced protein aggregation in endothelial cells. Redox Biol. 2020;34:101572.

    Article  CAS  Google Scholar 

  58. Altenhoff AM, Glover NM, Train C-M, Kaleb K, Warwick Vesztrocy A, Dylus D, de Farias TM, Zile K, Stevenson C, Long J, et al. The OMA orthology database in 2018: retrieving evolutionary relationships among all domains of life through richer web and programmatic interfaces. Nucleic Acids Res. 2018;46:D477–85.

    Article  CAS  Google Scholar 

  59. Doncheva NT, Assenov Y, Domingues FS, Albrecht M. Topological analysis and interactive visualization of biological networks and protein structures. Nat Protoc. 2012;7:670–85.

    Article  CAS  Google Scholar 

  60. Page L, Brin S, Motwani R, Winograd T. The PageRank citation ranking: bringing order to the web. Stanford InfoLab. 1999. Available from: http://ilpubs.stanford.edu:8090/422/

  61. Newman MEJ. Mixing patterns in networks. Phys Rev E. 2003;67:026126.

    Article  CAS  Google Scholar 

  62. Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016;33:1635–8.

    Article  CAS  Google Scholar 

  63. Zhao C, Wang Z. GOGO: an improved algorithm to measure the semantic similarity between gene ontology terms. Sci Rep. 2018;8:15107.

    Article  Google Scholar 

  64. Budovsky A, Craig T, Wang J, Tacutu R, Csordas A, Lourenço J, Fraifeld VE, de Magalhães JP. LongevityMap: a database of human genetic variants associated with longevity. Trends Genet. 2013;29:559–60.

    Article  CAS  Google Scholar 

  65. Griffith M, Griffith OL, Coffman AC, Weible JV, McMichael JF, Spies NC, Koval J, Das I, Callaway MB, Eldred JM, et al. DGIdb: mining the druggable genome. Nat Methods. 2013;10:1209–10.

    Article  CAS  Google Scholar 

  66. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.

    Article  Google Scholar 

  67. The Alliance of Genome Resources Consortium, Agapite J, Albou L-P, Aleksander S, Argasinska J, Arnaboldi V, Attrill H, Bello SM, Blake JA, Blodgett O, et al. Alliance of Genome Resources Portal: unified model organism research platform. Nucleic Acids Res. 2020;48:D650–8.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Duncan Sussfeld, Cameron Osborne, and three anonymous reviewers for critical reading of the manuscript.

Funding

This work was supported by an Emergence grant from Sorbonne Université (S21JR31001—IP/S/V2 EMERG-ESPA) to EB and JM and by a grant from the Ministère de la Recherche to CB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Bapteste.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teulière, J., Bernard, C., Corel, E. et al. Network analyses unveil ageing-associated pathways evolutionarily conserved from fungi to animals. GeroScience 45, 1059–1080 (2023). https://doi.org/10.1007/s11357-022-00704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00704-2

Keywords

Navigation