Skip to main content
Log in

Differential changes and interactions of autonomic functioning and sleep architecture before and after 50 years of age

  • Published:
AGE Aims and scope Submit manuscript

Abstract

We hypothesize that the time when age-related changes in autonomic functioning and in sleep structure occur are different and that autonomic functioning modulates sleep architecture differently before and after 50 years of age. Sixty-eight healthy subjects (aged 20 to 79 years old, 49 of them women) were enrolled. Correlation analysis revealed that wake after sleep onset, the absolute and relative value of stage 1 (S1; S1%), and relative value of stage 2 (S2) were positively correlated with age; however, sleep efficiency, stage 3 (S3), S3%, and rapid-eye-movement latency (REML) were negatively correlated with age. Significant degenerations of sleep during normal aging were occurred after 50 years of age; however, significant declines of autonomic activity were showed before 50 years of age. Before 50 years of age, vagal function during sleep was negatively correlated with arousal index; however, after 50 years of age, it was positively correlated with S1 and S1%. In addition, sympathetic activity during wake stage was positively related to S2% only after 50 years of age. Our results imply that the age-related changes in autonomic functioning decline promptly as individuals leave the younger part of their adult life span and that age-related changes in sleep slowly develop as individuals enter the older part of their adult life span. Furthermore, while various aspects of sleep architecture are modulated by both the sympathetic and vagal nervous systems during adult life span, the sleep quality is mainly correlated with the sympathetic division after 50 years of age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ako M et al (2003) Correlation between electroencephalography and heart rate variability during sleep. Psychiatry Clin Neurosci 57:59–65. doi:10.1046/j.1440-1819.2003.01080.x

    Article  PubMed  Google Scholar 

  • Bonnemeier H, Richardt G, Potratz J, Wiegand UK, Brandes A, Kluge N, Katus HA (2003) Circadian profile of cardiac autonomic nervous modulation in healthy subjects: differing effects of aging and gender on heart rate variability. J Cardiovasc Electrophysiol 14:791–799

    Article  PubMed  Google Scholar 

  • Bonnet MH, Arand DL (1997) Heart rate variability: sleep stage, time of night, and arousal influences. Electroencephalogr Clin Neurophysiol 102:390–396

    Article  CAS  PubMed  Google Scholar 

  • Bonnet MH, Arand DL (2007) EEG arousal norms by age. J Clin Sleep Med 3:271–274

    PubMed  PubMed Central  Google Scholar 

  • Brandenberger G, Viola AU, Ehrhart J, Charloux A, Geny B, Piquard F, Simon C (2003) Age-related changes in cardiac autonomic control during sleep. J Sleep Res 12:173–180

    Article  PubMed  Google Scholar 

  • Chen CY, Kuo TBJ, Hsieh IT, Yang CCH (2013) Electrical stimulation of the rostral ventrolateral medulla promotes wakefulness in rats. Sleep Med 14:1076–1084. doi:10.1016/j.sleep.2013.06.011

    Article  CAS  PubMed  Google Scholar 

  • Chung MH, Kuo TBJ, Hsu N, Chu H, Chou KR, Yang CCH (2009) Sleep and autonomic nervous system changes - enhanced cardiac sympathetic modulations during sleep in permanent night shift nurses. Scand J Work Environ Health 35:180–187

    Article  PubMed  Google Scholar 

  • Crasset V, Mezzetti S, Antoine M, Linkowski P, Degaute JP, van de Borne P (2001) Effects of aging and cardiac denervation on heart rate variability during sleep. Circulation 103:84–88

    Article  CAS  PubMed  Google Scholar 

  • Eaker ED, Chesebro JH, Sacks FM, Wenger NK, Whisnant JP, Winston M (1993) Cardiovascular disease in women. Circulation 88:1999–2009

    Article  CAS  PubMed  Google Scholar 

  • Finley JP, Nugent ST (1995) Heart rate variability in infants, children and young adults. J Auton Nerv Syst 51:103–108

    Article  CAS  PubMed  Google Scholar 

  • Frank SA, Roland DC, Sturis J, Byrne MM, Refetoff S, Polonsky KS, Van Cauter E (1995) Effects of aging on glucose regulation during wakefulness and sleep. Am J Physiol 269:e1006–1016

    CAS  PubMed  Google Scholar 

  • Fu CH, Yang CCH, Lin CL, Kuo TBJ (2006) Effects of long-term vegetarian diets on cardiovascular autonomic functions in healthy postmenopausal women. Am J Cardiol 97:380–383. doi:10.1016/j.amjcard.2005.08.057

    Article  PubMed  Google Scholar 

  • Guzzetti S, Piccaluga E, Casati R, Cerutti S, Lombardi F, Pagani M, Malliani A (1988) Sympathetic predominance in essential hypertension: a study employing spectral analysis of heart rate variability. J Hypertens 6:711–717

    Article  CAS  PubMed  Google Scholar 

  • Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Circulation 93:1043–1065

  • Kemp B, Varri A, Rosa AC, Nielsen KD, Gade J (1992) A simple format for exchange of digitized polygraphic recordings. Electroencephalogr Clin Neurophysiol 82:391–393

    Article  CAS  PubMed  Google Scholar 

  • Kiyan E, Okumus G, Cuhadaroglu C, Deymeer F (2010) Sleep apnea in adult myotonic dystrophy patients who have no excessive daytime sleepiness. Sleep Breath = Schlaf Atmung 14:19–24. doi:10.1007/s11325-009-0270-6

    Article  PubMed  Google Scholar 

  • Kung YY, Yang CCH, Chiu JH, Kuo TBJ (2011) The relationship of subjective sleep quality and cardiac autonomic nervous system in postmenopausal women with insomnia under auricular acupressure. Menopause 18:638–645. doi:10.1097/gme.0b013e31820159c1

    Article  PubMed  Google Scholar 

  • Kuo TBJ, Chan SH (1993) Continuous, on-line, real-time spectral analysis of systemic arterial pressure signals. Am J Physiol 264:H2208–2213

    CAS  PubMed  Google Scholar 

  • Kuo TBJ, Yang CCH (2005) Sleep-related changes in cardiovascular neural regulation in spontaneously hypertensive rats. Circulation 112:849–854. doi:10.1161/CIRCULATIONAHA.104.503920

    Article  PubMed  Google Scholar 

  • Kuo TBJ, Yien HW, Hseu SS, Yang CCH, Lin YY, Lee LC, Chan SH (1997) Diminished vasomotor component of systemic arterial pressure signals and baroreflex in brain death. Am J Physiol 273:H1291–1298

    CAS  PubMed  Google Scholar 

  • Kuo TBJ, Lin T, Yang CCH, Li CL, Chen CF, Chou P (1999) Effect of aging on gender differences in neural control of heart rate. Am J Physiol 277:H2233–2239

    CAS  PubMed  Google Scholar 

  • Kuo TBJ, Lai CJ, Shaw FZ, Lai CW, Yang CCH (2004) Sleep-related sympathovagal imbalance in SHR. Am J Physiol Heart Circ Physiol 286:H1170–1176. doi:10.1152/ajpheart.00418.2003

    Article  CAS  PubMed  Google Scholar 

  • Kuo TBJ, Shaw FZ, Lai CJ, Yang CCH (2008) Asymmetry in sympathetic and vagal activities during sleep-wake transitions. Sleep 31:311–320

    PubMed  PubMed Central  Google Scholar 

  • Kuo TBJ, Chen CY, Hsu YC, Yang CCH (2012a) Performance of the frequency domain indices with respect to sleep staging. Clin Neurophysiol 123:1338–1345. doi:10.1016/j.clinph.2011.11.003

    Article  PubMed  Google Scholar 

  • Kuo TBJ, Chen CY, Lai CT, Chuan TY, Wu WY, Tsai SC, Yang CCH (2012b) Sleep disturbance among spontaneously hypertensive rats is mediated by an alpha1-adrenergic mechanism. Am J Hypertens 25:1110–1117. doi:10.1038/ajh.2012.93

    Article  CAS  PubMed  Google Scholar 

  • Kuo TBJ, Hong CH, Hsieh IT, Lee GS, Yang CCH (2014) Effects of cold exposure on autonomic changes during the last rapid eye movement sleep transition and morning blood pressure surge in humans. Sleep Med 15:986–997. doi:10.1016/j.sleep.2014.03.022

    Article  PubMed  Google Scholar 

  • Liao D, Barnes RW, Chambless LE, Simpson RJ Jr, Sorlie P, Heiss G (1995) Age, race, and sex differences in autonomic cardiac function measured by spectral analysis of heart rate variability—the ARIC study Atherosclerosis Risk in Communities. Am J Cardiol 76:906–912

    Article  CAS  PubMed  Google Scholar 

  • Liu CC, Kuo TBJ, Yang CCH (2003) Effects of estrogen on gender-related autonomic differences in humans. Am J Physiol Heart Circ Physiol 285:H2188–2193

    Article  CAS  PubMed  Google Scholar 

  • Loredo JS, Ziegler MG, Ancoli-Israel S, Clausen JL, Dimsdale JE (1999) Relationship of arousals from sleep to sympathetic nervous system activity and BP in obstructive sleep apnea. Chest 116:655–659

    Article  CAS  PubMed  Google Scholar 

  • Lucini D, Mela GS, Malliani A, Pagani M (2002) Impairment in cardiac autonomic regulation preceding arterial hypertension in humans: insights from spectral analysis of beat-by-beat cardiovascular variability. Circulation 106:2673–2679

    Article  PubMed  Google Scholar 

  • Lucini D, de Giacomi G, Tosi F, Malacarne M, Respizzi S, Pagani M (2013) Altered cardiovascular autonomic regulation in overweight children engaged in regular physical activity. Heart 99:376–381. doi:10.1136/heartjnl-2012-302616

    Article  PubMed  Google Scholar 

  • Melo RC et al (2005) Effects of age and physical activity on the autonomic control of heart rate in healthy men. Braz J Med Biol Res 38:1331–1338

    Article  CAS  PubMed  Google Scholar 

  • Mitchell GF (2008) Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage J Appl Physiol (1985) 105:1652–1660 doi:10.1152/japplphysiol.90549.2008

  • Moodithaya S, Avadhany ST (2012) Gender differences in age-related changes in cardiac autonomic nervous function. J Aging Res 2012:679345. doi:10.1155/2012/679345

    Article  PubMed  PubMed Central  Google Scholar 

  • Mooradian AD, Korenman SG (2006) Management of the cardinal features of andropause. Am J Ther 13:145–160. doi:10.1097/01.mjt.0000132252.80403.c9

    Article  PubMed  Google Scholar 

  • Mozaffarian D et al (2015) Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131:e29–322. doi:10.1161/CIR.0000000000000152

    Article  PubMed  Google Scholar 

  • Nielsen T, Paquette T, Solomonova E, Lara-Carrasco J, Colombo R, Lanfranchi P (2010) Changes in cardiac variability after REM sleep deprivation in recurrent nightmares. Sleep 33:113–122

    PubMed  PubMed Central  Google Scholar 

  • Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV (2004) Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27:1255–1273

    PubMed  Google Scholar 

  • Rao U, Poland RE, Lutchmansingh P, Ott GE, McCracken JT, Lin KM (1999) Relationship between ethnicity and sleep patterns in normal controls: implications for psychopathology and treatment. J Psychiatr Res 33:419–426

    Article  CAS  PubMed  Google Scholar 

  • Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques, and scoring system for sleep stages of human subjects. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Scholz UJ, Bianchi AM, Cerutti S, Kubicki S (1997) Vegetative background of sleep: spectral analysis of the heart rate variability. Physiol Behav 62:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Sjoberg N, Brinkworth GD, Wycherley TP, Noakes M, Saint DA (2011) Moderate weight loss improves heart rate variability in overweight and obese adults with type 2 diabetes J Appl Physiol (1985) 110:1060–1064 doi:10.1152/japplphysiol.01329.2010

  • Skrapari I, Tentolouris N, Perrea D, Bakoyiannis C, Papazafiropoulou A, Katsilambros N (2007) Baroreflex sensitivity in obesity: relationship with cardiac autonomic nervous system activity. Obesity (Silver Spring) 15:1685–1693. doi:10.1038/oby.2007.201

    Article  Google Scholar 

  • Sowers MF et al (2008) Sex steroid hormone profiles are related to sleep measures from polysomnography and the Pittsburgh Sleep Quality Index. Sleep 31:1339–1349

    PubMed  PubMed Central  Google Scholar 

  • Stein PK, Pu Y (2012) Heart rate variability, sleep and sleep disorders. Sleep Med Rev 16:47–66. doi:10.1016/j.smrv.2011.02.005

    Article  PubMed  Google Scholar 

  • Tsai HJ, Kuo TBJ, Lee GS, Yang CCH (2015) Efficacy of paced breathing for insomnia: enhances vagal activity and improves sleep quality. Psychophysiology 52:388–396. doi:10.1111/psyp.12333

    Article  CAS  PubMed  Google Scholar 

  • Tuzcu EM et al (2001) High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation 103:2705–2710

    Article  CAS  PubMed  Google Scholar 

  • Umetani K, Singer DH, McCraty R, Atkinson M (1998) Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol 31:593–601

    Article  CAS  PubMed  Google Scholar 

  • Van Cauter E, Leproult R, Plat L (2000) Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. Jama 284:861–868

    Article  PubMed  Google Scholar 

  • Yang CCH, Kuo TBJ, Chan SH (1996) Auto- and cross-spectral analysis of cardiovascular fluctuations during pentobarbital anesthesia in the rat. Am J Physiol 270:H575–582

    CAS  PubMed  Google Scholar 

  • Yang CCH, Lai CW, Lai HY, Kuo TBJ (2002) Relationship between electroencephalogram slow-wave magnitude and heart rate variability during sleep in humans. Neurosci Lett 329:213–216

    Article  CAS  PubMed  Google Scholar 

  • Yang CCH, Shaw FZ, Lai CJ, Lai CW, Kuo TBJ (2003) Relationship between electroencephalogram slow-wave magnitude and heart rate variability during sleep in rats. Neurosci Lett 336:21–24

    Article  CAS  PubMed  Google Scholar 

  • Yeragani VK, Sobolewski E, Kay J, Jampala VC, Igel G (1997) Effect of age on long-term heart rate variability. Cardiovasc Res 35:35–42

    Article  CAS  PubMed  Google Scholar 

  • Young T, Peppard PE, Gottlieb DJ (2002) Epidemiology of obstructive sleep apnea: a population health perspective. Am J Res Crit Care Med 165:1217–1239

    Article  Google Scholar 

Download references

Acknowledgments

We thank Tzu-Ching Chen, Jui-Wen Chu, Wan-Ching Wu, and Wan-Han Hsu for their excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. H. Yang.

Ethics declarations

The procedures used in this study were approved by the Institutional Review Board of Taipei Veterans General Hospital.

Conflict of interest

The authors declare that they have no competing interests.

Informed consent

All subjects gave written informed consent after the experimental procedures had been described to them.

Grants

This work was supported by a grant (103 AC-B3) from the Ministry of Education, Aim for the Top University Plan, a grant (NSC-99-2627-B-010-006) from the National Science Council (Taiwan), a grant (10101-62-031) from Taipei City Hospital, and a grant (MOST 103-2911-I-008-001) from Ministry of Science and Technology support for the Center for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan.

Additional information

T. B. J. Kuo and Jia-Yi Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 75 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, T.B.J., Li, JY., Kuo, HK. et al. Differential changes and interactions of autonomic functioning and sleep architecture before and after 50 years of age. AGE 38, 5 (2016). https://doi.org/10.1007/s11357-015-9863-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-015-9863-0

Keywords

Navigation