Skip to main content
Log in

Impacts of metformin and aspirin on life history features and longevity of crickets: trade-offs versus cost-free life extension?

  • Published:
AGE Aims and scope Submit manuscript

Abstract

We examined the impacts of aspirin and metformin on the life history of the cricket Acheta domesticus (growth rate, maturation time, mature body size, survivorship, and maximal longevity). Both drugs significantly increased survivorship and maximal life span. Maximal longevity was 136 days for controls, 188 days (138 % of controls) for metformin, and 194 days (143 % of controls) for aspirin. Metformin and aspirin in combination extended longevity to a lesser degree (163 days, 120 % of controls). Increases in general survivorship were even more pronounced, with low-dose aspirin yielding mean longevity 234 % of controls (i.e., health span). Metformin strongly reduced growth rates of both genders (<60 % of controls), whereas aspirin only slightly reduced the growth rate of females and slightly increased that of males. Both drugs delayed maturation age relative to controls, but metformin had a much greater impact (>140 % of controls) than aspirin (~118 % of controls). Crickets maturing on low aspirin showed no evidence of a trade-off between maturation mass and life extension. Remarkably, by 100 days of age, aspirin-treated females were significantly larger than controls (largely reflecting egg complement). Unlike the reigning dietary restriction paradigm, low aspirin conformed to a paradigm of “eat more, live longer.” In contrast, metformin-treated females were only ~67 % of the mass of controls. Our results suggest that hormetic agents like metformin may derive significant trade-offs with life extension, whereas health and longevity benefits may be obtained with less cost by agents like aspirin that regulate geroprotective pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aksenov V, Long J, Liu J, Szechtman H, Khanna P, Matravadia S, Rollo CD (2013) A complex dietary supplement augments spatial learning, brain mass, and mitochondrial electron transport chain activity in aging mice. AGE 35:23–33

    PubMed Central  CAS  PubMed  Google Scholar 

  • Al-Gohary OM, Al-Kassas RS (2000) Stability studies of aspirin-magaldrate double layer tablets. Pharm Acta Helv 74:351–360

    CAS  PubMed  Google Scholar 

  • Algra AM, Rothwell PM (2012) Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol 13:518–527

    CAS  PubMed  Google Scholar 

  • Anisimov VN (2013) Metformin: do we finally have an anti-aging drug? Cell Cycle 12:3483–3489

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anisimov VN, Egormin PA, Bershtein LM, Zabezhinskii MA, Piskunova TS, Popovich IG, Semenchenko AV (2005a) Metformin decelerates aging and development of mammary tumors in HER-2/neu transgenic mice. Bull Exp Biol Med 139:721–723

    CAS  PubMed  Google Scholar 

  • Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Kovalenko IG, Poroshina TE, Semenchenko AV, Provinciali M, Re F (2005b) Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp Gerontol 40:685–693

    CAS  PubMed  Google Scholar 

  • Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Tyndyk ML, Yurova MV, Kovalenko IG, Poroshina TE, Semenchenko AV (2008) Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 7:2769–2773

    CAS  PubMed  Google Scholar 

  • Anisimov VN, Egormin PA, Piskunova TS, Popovich IG, Tyndyk ML, Yurova MN, Zabezhinski MA, Anikin IV, Karkach AS, Romanyukha AA (2010) Metformin extends life span of HER-2/neu transgenic mice and in combination with melatonin inhibits growth of transplantable tumors in vivo. Cell Cycle 9:188–197

    CAS  PubMed  Google Scholar 

  • Anisimov VN, Berstein LM, Popovich IG, Zabezhinski MA, Egormin PA, Piskunova TS, Semenchenko AV, Tyndyk ML, Yurova MN, Kovalenko IG, Poroshina TE (2011) If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging 3:148–157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arkadieva AV, Mamonov AA, Popovich IG, Anisimov VN, Mikhelson VM, Spivak IM (2011) Metformin slows down ageing processes at the cellular level in SHR mice. Cell Tissue Biol 5:151–159

    Google Scholar 

  • Ayyadevara S, Bharill P, Dandapat A, Hu C, Khaidakov M, Mitra S, Shmookler Reis RJ, Mehta JL (2013) Aspirin inhibits oxidant stress, reduces age-associated functional declines, and extends lifespan of Caenorhabditis elegans. Antioxid Redox Signal 18:481–490

    CAS  PubMed  Google Scholar 

  • Barneoud P, Curet O (1999) Beneficial effects of lysine acetylsalicylate, a soluble salt of aspirin, on motor performance in a transgenic model of amyotrophic lateral sclerosis. Exp Neurol 155:243–251

    CAS  PubMed  Google Scholar 

  • Bartke A, Sun LY, Longo V (2013) Somatotropic signaling: trade-offs between growth, reproductive development, and longevity. Physiol Rev 93:571–598

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high calorie diet. Nature 444:337–342

    CAS  PubMed  Google Scholar 

  • Bonnefont-Rousselot D, Raji B, Walrand S, Gardes-Albert M, Jore D, Legrand A, Vasson M (2003) An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress. Metab Clin Exp 52:586–589

    CAS  PubMed  Google Scholar 

  • Braendle C, Heyland A, Flatt T (2011) Integrating mechanistic and evolutionary analysis of life history variation. In: Flatt T, Heyland A (eds) Mechanisms of life history evolution: the genetics and physiology of life history traits and trade-offs. Oxford University Press, Oxford, pp 3–10

    Google Scholar 

  • Burkewitz K, Zhang Y, Mair WB (2014) AMPK at the nexus of energetics and aging. Cell Metab 20:10–25

  • Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD1 metabolism and SIRT1 activity. Nature 458:1056–1060

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen H, Maklakov AA (2012) Longer life span evolves under high rates of condition-dependent mortality. Curr Biol 22:2140–2143

    CAS  PubMed  Google Scholar 

  • Choi KM, Lee HL, Kwon YY, Kang MS, Lee SK, Lee CK (2013) Enhancement of mitochondrial function correlates with the extension of lifespan by caloric restriction and caloric restriction mimetics in yeast. Biochem Biophys Res Commun 441:236–242

    CAS  PubMed  Google Scholar 

  • Constantini D, Metcalfe NB, Monaghan P (2010) Ecological processes in a hormetic framework. Ecol Lett 13:1435–1447

  • Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM (2014) Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun 5:3557. doi:10.1038/ncomms4557

    PubMed Central  PubMed  Google Scholar 

  • Cutler RG (1984a) Antioxidants, aging and longevity. In: Pryor WA (ed) Free radicals in biology, vol VI. Academic, New York, pp 371–428

    Google Scholar 

  • Cutler RG (1984b) Evolutionary biology of aging and longevity in mammalian species. In: Johnson JE (ed) Aging and cell function. Plenum, New York, pp 1–147

    Google Scholar 

  • Dabour N, Bando T, Nakamura T, Miyawaki K, Mito T, Ohuchi H, Ohuchi H, Noji S (2011) Cricket body size is altered by systemic RNAi against insulin signaling components and epidermal growth factor receptor. Develop Growth Differ 53:857–869

    CAS  Google Scholar 

  • Din FV, Valanciute A, Houde VP, Zibrova D, Green KA, Sakamoto K, Alessi DR, Dunlop MG (2012) Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology 142:1504–1515

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duffy PH, Lewis SM, Mayhugh MA, Trotter RW, Latendresse JR, Thorn BT, Feuers RJ (2004) The effects of different levels of dietary restriction on neoplastic pathology in the male Sprague-Dawley rat. Aging 16:448–456

    Google Scholar 

  • Edward DA, Chapman T (2011) Mechanisms underlying reproductive trade-offs: costs of reproduction. In: Flatt T, Heyland A (eds) Mechanisms of life history evolution: the genetics and physiology of life history traits and tradeoffs. Oxford University Press, Oxford, pp 137–152

    Google Scholar 

  • El Mir MY, Noguera V, Fontaine E, Avéret N, Rigoulet M, Leverve X (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275:223–228

    PubMed  Google Scholar 

  • Flatt T (2011) Survival costs of reproduction in Drosophila. Exp Gerontol 46:369–375

    PubMed  Google Scholar 

  • Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G (2013) Metabolic targets for cancer therapy. Nat Rev 12:829–846

    CAS  Google Scholar 

  • Grandison RC, Piper MDW, Partridge L (2009) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462:1061–1065

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grosser N, Schroder H (2003) Aspirin protected bovine endothelial cells from oxidant damage via the nitric oxide-cGMP pathway. Arterioscler Thromb Vasc Biol 23:1345–1351

    CAS  PubMed  Google Scholar 

  • Gupta V, Liu S, Ando H, Ishii R, Tateno S, Kaneko Y, Yugami M, Sakamoto S, Yamaguchi Y, Nureki O, Handa H (2013) Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity. Mol Pharmacol 84:824–833

    CAS  PubMed  Google Scholar 

  • Hack MA (1997) The effects of mass and age on standard metabolic rate in house crickets. Physiol Entomol 22:325–331

    Google Scholar 

  • Hardie DG (2005) New roles for the LKB1-AMPK pathway. Curr Opin Cell Biol 17:167–173

    CAS  PubMed  Google Scholar 

  • Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262

    CAS  PubMed  Google Scholar 

  • Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, Peggie MW, Zibrova D, Green KA, Mustard KJ, Kemp BE, Sakamoto K, Steinberg GR, Hardie DG (2012) The ancient drug salicylate directly activates AMP activated protein kinase. Science 336:918–922

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hochschild R (1971) Effect of membrane stabilizing drugs on mortality in Drosophila melanogaster. Exp Gerontol 6:133–151

    CAS  PubMed  Google Scholar 

  • Holliday R (1989) Food, reproduction and longevity: is the extended lifespan of calorie restricted animals an evolutionary adaptation? Bioessays 10:125–127

    CAS  PubMed  Google Scholar 

  • Hou M, Venier N, Sugar L, Musquera M, Pollak M, Kiss A, Fleshner N, Klotz L, Venkateswaran V (2010a) Protective effect of metformin in CD1 mice placed on a high carbohydrate-high fat diet. Biochem Biophys Res Commun 397:537–542

    CAS  PubMed  Google Scholar 

  • Hou X, Song J, Li XN, Zhang L, Wang X, Chen L, Shen YH (2010b) Metformin reduces intracellular reactive oxygen species levels by upregulating expression of the antioxidant thioredoxin via the AMPK-FOXO3 pathway. Biochem Biophys Res Commun 396:199–205

    CAS  PubMed  Google Scholar 

  • Ingram DK, Zhu M, Mamczarz J, Zou S, Lane MA, Roth GS, deCabo R (2006) Calorie restriction mimetics: an emerging research field. Aging Cell 5:97–108

    CAS  PubMed  Google Scholar 

  • Jafari M (2010) Drosophila melanogaster as a model system for the evaluation of anti-aging compounds. Fly 4:253–257

    CAS  PubMed  Google Scholar 

  • Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493:338–345

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kengeri SS, Maras AH, Suckow CL, Chiang EC, Waters DJ (2013) Exceptional longevity in female Rottweiler dogs is not encumbered by investment in reproduction. AGE 35:2503–2513

    PubMed Central  CAS  PubMed  Google Scholar 

  • King EG, Roff DA, Fairbairn DJ (2011) Trade-off acquisition and allocation in Gryllus firmus: a test of the Y model. J Evol Biol 24:256–264

    CAS  PubMed  Google Scholar 

  • Kirkwood TBL (2008) A systematic look at an old problem. Nature 451:644–647

    CAS  PubMed  Google Scholar 

  • Koornneef A, Leon-Reyes A, Ritsema T, Verhage A, Den Otter FC, Van Loon LC, Pieterse CMJ (2008) Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol 147:1358–1368

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leroi AM (2001) Molecular signals versus the Loi de Balancement. Trends Ecol Evol 16:24–29

    PubMed  Google Scholar 

  • Long J, Aksenov V, Rollo CD, Liu J (2012) A complex dietary supplement modulates nitrative stress in normal mice and in a new mouse model of nitrative stress and cognitive aging. Mech Aging Dev 133:523–529

    CAS  PubMed  Google Scholar 

  • Lopez-Martınez G, Hahn DA (2014) Early life hormetic treatments decrease irradiation-induced oxidative damage, increase longevity, and enhance sexual performance during old age in the Caribbean fruit fly. PLoS ONE 9(1):e88128. doi:10.1371/journal.pone.0088128

    PubMed Central  PubMed  Google Scholar 

  • Lyn J, Aksenov V, LeBlanc Z, Rollo CD (2012) Life history features and aging rates: insights from intra-specific patterns in the cricket Acheta domesticus. Evol Biol 39:371–387

    Google Scholar 

  • Lyn J, Naik W, Aksenov V, Rollo CD (2011) Development of the cricket Acheta domesticus as a model of aging. AGE 33:509–522

    PubMed Central  PubMed  Google Scholar 

  • Ma TC, Buescher JL, Oatis B, Funk JA, Nash AJ, Carrier RL, Hoyt KR (2007) Metformin therapy in a transgenic mouse model of Huntington’s disease. Neurosci Lett 411:98–103

    CAS  PubMed  Google Scholar 

  • Martin-Montalvo M, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM, Minor RK, Blouin MJ, Schwab M, Pollak M, Zhang Y, Yu Y, Becker KG, Bohr VA, Ingram DK, Sinclair DA, Wolf NS, Spindler SR, Bernier M, de Cabo R (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4:2192. doi:10.1038/ncomms3192

    PubMed Central  PubMed  Google Scholar 

  • Massie HR, Williams TR, Iodice AA (1985) Influence of anti-inflammatory agents on the survival of Drosophila. J Gerontol 40:257–260

    CAS  PubMed  Google Scholar 

  • McCarty MF (2014) AMPK activation-protean potential for boosting healthspan. AGE 36:641–663

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nieman DC, Trone GY, Austin MD (2003) A new handheld device for measuring resting metabolic rate and oxygen consumption. J Am Diet Assoc 103:588–593

    PubMed  Google Scholar 

  • Onken B, Driscoll M (2010) Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PLoS One 5(1):e8758. doi:10.1371/journal.pone.0008758

    PubMed Central  PubMed  Google Scholar 

  • Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348:607–614

    PubMed Central  CAS  PubMed  Google Scholar 

  • Phillips T, Leeuwenburgh C (2004) Lifelong aspirin supplementation as a means to extending life span. Rejuvenation Res 7:243–251

    CAS  PubMed  Google Scholar 

  • Pugh TD, Klopp RG, Weindruch R (1999) Controlling caloric consumption: protocols for rodents and rhesus monkeys. Neurobiol Aging 20:157–165

    CAS  PubMed  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Expt Bot 62:3321–3338

  • Rizzo MR, Mari D, Barbieri M, Ragno E, Grella R, Provenzano R, Villa I, Esposito K, Giugliano D, Paolisso G (2005) Resting metabolic rate and respiratory quotient in human longevity. J Clin Endocrinol Metab 90:409–413

    CAS  PubMed  Google Scholar 

  • Rocha JS, Bonkowski MS, Masternak MM, França LR, Bartke A (2012) Effects of adult onset mild calorie restriction on weight of reproductive organs, plasma parameters and gene expression in male mice. Anim Reprod 9:40–51

    PubMed Central  PubMed  Google Scholar 

  • Rollo CD (1986) A test of the principle of allocation using two sympatric species of cockroaches. Ecology 67:616–628

    Google Scholar 

  • Rollo CD (1994) Phenotypes: their epigenetics, ecology and evolution. Chapman and Hall, London

    Google Scholar 

  • Rollo CD (2010) Aging and the mammalian regulatory triumvirate. Aging Dis 1:105–138

    PubMed Central  PubMed  Google Scholar 

  • Rollo CD (2012) Circadian redox regulation. In: Pantopoulos K, Schipper HM (eds) Principles of free radical biomedicine. Nova Science, New York, pp 575–627

    Google Scholar 

  • Rollo CD (2014) Trojan genes and transparent genomes: sexual selection, regulatory evolution and the real hopeful monsters. Evol Biol 41:367–387

    Google Scholar 

  • Rollo CD, Hawryluk MD (1988) Compensatory scope and resource allocation in two species of aquatic snails. Ecology 69:146–156

    Google Scholar 

  • Rollo CD, Carlson J, Sawada M (1996) Accelerated aging of giant transgenic mice is associated with elevated free radical processes. Can J Zool 74:606–620

    CAS  Google Scholar 

  • Rollo CD, Kajiura LJ, Wylie B, D’Souza S (1999) The growth hormone axis, feeding, and central allocative regulation: lessons from giant transgenic growth hormone mice. Can J Zool 77:1861–1873

    CAS  Google Scholar 

  • Rothwell PM, Fowkes FGR, Belch JF, Ogawa H, Warlow CP, Meade TW (2011) Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377:31–41

    CAS  PubMed  Google Scholar 

  • Rothwell PM, Price JF, Fowkes FGR, Zanchetti A, Roncaglioni MC, Tognoni G, Lee R, Belch JFF, Wilson M, Mehta Z, Meade TW (2012) Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet 379:1602–1612

    CAS  PubMed  Google Scholar 

  • Ruffer M, Steipe B, Zenk MH (1995) Evidence against specific binding of salicylic acid to plant catalase. FEBS Lett 377:175–180

    CAS  PubMed  Google Scholar 

  • Saul N, Pietsch K, Stürzenbaum SR, Menzel R, Steinberg CEW (2013) Hormesis and longevity with tannins: free of charge or cost-intensive? Chemosphere 93:1005–1008

    CAS  PubMed  Google Scholar 

  • Sharma VK, Nautiyal V, Goel KK, Sharma A (2010) Assessment of thermal stability of metformin hydrochloride. Asian J Chem 22:3561–3566

    CAS  Google Scholar 

  • Shimamura H, Terada Y, Okado T, Tanaka H, Inoshita S, Sasaki S (2003) The PI3-kinase-Akt pathway promotes mesangial cell survival and inhibits apoptosis in vitro via NF-κB and Bad. J Am Soc Nephrol 14:1427–1434

    CAS  PubMed  Google Scholar 

  • Simon AF, Shih C, Mack A, Benzer S (2003) Steroid control of longevity in Drosophila melanogaster. Science 299:1407–1410

    CAS  PubMed  Google Scholar 

  • Slack C, Foley A, Partridge L (2012) Activation of AMPK by the putative dietary restriction mimetic metformin is insufficient to extend lifespan in Drosophila. PLoS ONE 7:e47699. doi:10.1371/journal.pone.0047699

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith DL Jr, Elam CF Jr, Mattison JA, Lane MA, Roth GS, Ingram DK, Allison DB (2010) Metformin supplementation and life span in Fischer-344 rats. J Gerontol Ser A Biol Sci Med Sci 65:468–474

    Google Scholar 

  • Snavely MJ, Price JC, Jun HW (1993) The stability of aspirin in a moisture containing direct compression tablet formulation. Drug Dev Ind Pharm 19:729–738

    CAS  Google Scholar 

  • Spindler SR (2010) Caloric restriction: from soup to nuts. Ageing Res Rev 9:324–353

    CAS  PubMed  Google Scholar 

  • Spindler SR, Mote PL, Li R, Dhahbi JM, Yamakawa A, Flegal JM, Jeske DR, Li R, Lublin AL (2013a) β1-Adrenergic receptor blockade extends the life span of Drosophila and long-lived mice. AGE 35:2099–2109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Spindler SR, Mote PL, Flegal JM, Teter B (2013b) Influence on longevity of blueberry, cinnamon, green and black tea, pomegranate, sesame, curcumin, morin, pycnogenol, quercetin, and taxifolin fed iso-calorically to long-lived, F1 hybrid mice. Rejuvenation Res 16:143–151

    CAS  PubMed  Google Scholar 

  • Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E, Nadon NL, Warner HR, Harrison DE (2008) Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 7:641–650

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thalera JS, McArta SH, Kaplanc I (2012) Compensatory mechanisms for ameliorating the fundamental trade-off between predator avoidance and foraging. PNAS 109:12075–12080

    Google Scholar 

  • Torres MA, Jones JDG, Dang JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    PubMed Central  CAS  PubMed  Google Scholar 

  • van Noordwijk A, de Jong G (1986) Acquisition and allocation of resources: their influence on variation in life history tactics. Am Nat 128:137–142

    Google Scholar 

  • Verhage A, van Wees SCM, Pieterse CMJ (2010) Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol 154:536–540

    PubMed Central  CAS  PubMed  Google Scholar 

  • Viollet B, Guigas B, Garcia NS, Leclerc J, Foretz M, Andreelli F (2012) Cellular and molecular mechanisms of metformin: an overview. Clin Sci 122:253–270

    PubMed Central  CAS  PubMed  Google Scholar 

  • Walker DW, McColl G, Jenkins NL, Harris J, Lithgow GJ (2000) Evolution of lifespan in C. elegans. Nature 405:296–297

    CAS  PubMed  Google Scholar 

  • Wan QL, Zheng SQ, Wu GS, Luo HR (2013) Aspirin extends the lifespan of Caenorhabditis elegans via AMPK and DAF-16/FOXO in dietary restriction pathway. Exp Gerontol 48:499–506

    CAS  PubMed  Google Scholar 

  • Wang J, Gallagher D, DeVito LM, Cancino GI, Tsui D, He L, Keller GM, Frankland PW, Kaplan DR, Miller FD (2012) Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 11:23–35

    CAS  PubMed  Google Scholar 

  • Wit J, Sarup P, Lupsa N, Malte H, Frydenberg J, Loeschcke V (2013) Longevity for free? Increased reproduction with limited trade-offs in Drosophila melanogaster selected for increased life span. Exp Gerontol 48:349–357

    PubMed  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    CAS  PubMed  Google Scholar 

  • Wu R, Lamontagne D, de Champlain J (2002) Antioxidative properties of acetylsalicylic acid on vascular tissues from normotensive and spontaneously hypertensive rats. Circulation 105:387–392

    CAS  PubMed  Google Scholar 

  • Xie Z, Chen Z (1999) Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. Plant Physiol 120:217–225

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yan S, Dong X (2014) Perception of the plant immune signal salicylic acid. Curr Opin Plant Biol 20:64–68

    CAS  PubMed  Google Scholar 

  • Yang Y, Qi M, Mei C (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J 40:909–919

    CAS  PubMed  Google Scholar 

  • Zakikhani M, Blouin M, Piura E, Pollak MN (2010) Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Can Res Treat 123:271–279

    CAS  Google Scholar 

  • Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

No agency supported this study.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. David Rollo.

Additional information

Harvir Hans and Asad Lone contributed equally to this research.

Appendix

Appendix

Determining doses of metformin and aspirin was guided by several goals. Starting with human doses, we adjusted for body mass and metabolic rates to scale cricket doses roughly to that respective to humans. This was intended to identify a range likely tolerable for crickets. It was logistically intractable to match doses to growing crickets, particularly since males and females differ in mass and treatments were anticipated to diverge with time as well. Compensatory feeding or reductions associated with reduced growth could not be anticipated. We aimed to maintain a single dose for each treatment and across ages to provide a unified experimental framework. We also wanted to ensure that the doses were high enough to strongly impact crickets as there was uncertainty of biological differences between species (i.e., higher than the conservative human doses). We calculated the dose such that a juvenile cricket eating 30 mg of food would obtain that scaled equivalent of a human (i.e., adjusted for mass and metabolic rate). This ensured that the experiment began with a relatively high dose. Initial pilot studies did not detect any tolerance issues and results illustrate that all treatments obtained increased survivorship over controls across all ages (Fig. 1).

Diets for all treatments were prepared similarly. Aspirin and metformin were obtained from Sigma-Aldrich. Doses of drugs were based on recommendations for humans adjusted for differences in the mass and metabolic rate of crickets. The mass ratio of crickets (0.5386 g) to humans (~80 kg) was 6.7325 × 10−6. The ratio of the metabolic rate of crickets (14.38 ml O2/g/day; Hack 1997) to humans (4.62 ml O2/g/day; Nieman et al. 2003; Rizzo et al. 2005) was 3.11. Combining these conversion factors obtained a global conversion factor of 2.09 × 10−5. For metformin, the maximum recommended human dose is ~2.55 g/day (FDA guidelines). Applying the conversion factor yields a rough estimate of 2.09 × 10−5 × 2.55 = 5.3294 × 10−5 g of metformin/cricket. A juvenile cricket eats ~30 mg of food/day so the concentration of metformin in food that would deliver a high dose was 5.329 × 10−5 g metformin/0.03 g food or 1.78 × 10−3 g metformin/g diet. Anisimov (2013) reviewed dosages used in studies of metformin. The dose of metformin obtaining health and survival benefits in C57BL/6 mice was 0.1 % (w/w) in food (e.g., 1.0 × 10−3 g/g) (Martin-Montalvo et al. 2013)—very close to ours.

The recommended high dose of aspirin for humans is 325 mg, and a low dose (25 %) is 81 mg (pharmacy products). The high dose per cricket obtained by applying the global conversion factor was 2.09 × 10−5 × 325 = 6.79 × 10−3 mg/cricket. Given that a juvenile cricket eats ~30 mg of food/day, the concentration for the diet was 6.79 × 10−6/0.03 = 2.263 × 10−4 g aspirin/g food for the high dose. The low dose was 25 % of the high dose (5.65 × 10−5 g aspirin/g food). The metformin-aspirin combination was made with the above dosage of metformin and the high-dose aspirin.

Drugs were stirred into the mixture of agar and water after it had cooled well below 50 °C. Metformin is stable at temperatures as high as 70 °C (Sharma et al. 2010), but aspirin loses stability above 50 °C (Snavely et al. 1993; Al-Gohary and Al-Kassas 2000). When the mixture reached room temperature, it was poured into a blender and 30 g of guinea pig food was thoroughly blended in. The agar was then set and stored in a dark refrigerator. New diet was prepared weekly.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hans, H., Lone, A., Aksenov, V. et al. Impacts of metformin and aspirin on life history features and longevity of crickets: trade-offs versus cost-free life extension?. AGE 37, 31 (2015). https://doi.org/10.1007/s11357-015-9769-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-015-9769-x

Keywords

Navigation