Skip to main content
Log in

Past environmental changes: using sedimentary photosynthetic pigments to enhance subtropical reservoir management

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The historical impacts of eutrophication processes were investigated in six subtropical reservoirs (São Paulo, Brazil) using a paleolimnological approach. We questioned whether the levels of pigment indicators of algal biomass could provide information about trophic increase and whether carotenoid pigments could offer additional insights. The following proxies were employed: organic matter, total phosphorus, total nitrogen, photosynthetic pigments (by high-performance liquid chromatography), sedimentation rates, and geochronology (by 210 Pb technique). Principal component analysis indicated a gradient of eutrophication. In eutrophic reservoirs (e.g., Rio Grande and Salto Grande), levels of lutein and zeaxanthin increased over time, suggesting growth of Chlorophyta and Cyanobacteria. These pigments were significantly associated with algal biomass, reflecting their participation in phytoplankton composition. In mesotrophic reservoirs, Broa and Itupararanga, increases and significative linear correlations (r > 0.70) between pigments and nutrients are mainly linked to agricultural and urban activities. In the oligotrophic reservoir Igaratá, lower pigment and nutrient levels reflected lesser human impact and good water quality. This study underscores eutrophication's complexity across subtropical reservoirs. Photosynthetic pigments associated with specific algal groups were informative, especially when correlated with nutrient data. The trophic increase, notably in the 1990s, may have been influenced by neoliberal policies. Integrated pigment and geochemical analysis offers a more precise understanding of eutrophication changes and their ties to human factors. Such research can aid environmental monitoring and sustainable policy development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abreu MC, Tonello KC (2015) Estimativa do balanço hídrico climatológico da bacia hidrográfica do rio Sorocaba–São Paulo Estimate of the water balance of the Sorocaba river watershed–SP. Ambiência 11. https://doi.org/10.5935/ambiencia.2015.03.01

  • Airs RL, Atkinson JE, Keely BJ (2001) Development and application of a high resolution liquid chromatographic method for the analysis of complex pigment distributions. J Chromatogr A 917. https://doi.org/10.1016/S0021-9673(01)00663-X

  • Alves da Silva MEP, de Castro PMG, Maruyama LS, de Paiva P (2005) Levantamento Da Pesca E Perfil Socioeconômico Dos Pescadores Artesanais Profissionais No Reservatório Billings. Boletim do Instituto de PescaInstituto da Pesca 35:531–543

    Google Scholar 

  • Andersen JM (1976) An ignition method for determination of total phosphorus in lake sediments. Water Res 10. https://doi.org/10.1016/0043-1354(76)90175-5

  • Angelini R, Bini LM, Starling FLRM (2008) Efeitos de diferentes intervenções no processo de eutrofização do Lago Paranoá (Brasília - DF). Oecologia brasiliensis 12. https://doi.org/10.4257/oeco.2008.1203.15

  • APHA- American Public Health Association (2002) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  • Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena (Amst) 5. https://doi.org/10.1016/S0341-8162(78)80002-2

  • Araújo BM, Negri RG, Moraes Ananias PH et al (2023) Remotely sensed-based analysis about climatic and landscape change effects on phytoplankton bloom in Barra Bonita Reservoir (São Paulo State, Brazil). J Appl Remote Sens 17. https://doi.org/10.1117/1.jrs.17.014509

  • Barçante B, Nascimento NO, Silva TFG et al (2020) Cyanobacteria dynamics and phytoplankton species richness as a measure of waterbody recovery: response to phosphorus removal treatment in a tropical eutrophic reservoir. Ecol Indic 117. https://doi.org/10.1016/j.ecolind.2020.106702

  • Beghelli FG, Pompêo ML, Páscoli M et al (2016) Can a one-sampling campaign produce robust results for water quality monitoring? A case of study in Itupararanga reservoir, SP, Brazil. Acta Limnol Bras 28. https://doi.org/10.1590/s2179-975x3115

  • Betterle N, Ballottari M, Hienerwadel R et al (2010) Dynamics of zeaxanthin binding to the photosystem II monomeric antenna protein Lhcb6 (CP24) and modulation of its photoprotection properties. Arch Biochem Biophys 504. https://doi.org/10.1016/j.abb.2010.05.016

  • Biamont-Rojas IE, Cardoso-Silva S, Bitencourt MD et al (2023) Ecotoxicology and geostatistical techniques employed in subtropical reservoirs sediments after decades of copper sulfate application. Environ Geochem Health 45. https://doi.org/10.1007/s10653-022-01362-1

  • Borghini F, Colacevich A, Bargagli R (2007) Water geochemistry and sedimentary pigments in northern Victoria Land lakes, Antarctica. Polar Biol 30. https://doi.org/10.1007/s00300-007-0274-2

  • Brown S, Colman B (1963) Oscillaxanthin in lake sediments. Limnol Oceanogr 8. https://doi.org/10.4319/lo.1963.8.3.0352

  • Brown SR, McIntosh HJ, Smol JP (1984) Recent paleolimnology of a meromictic lake: fossil pigments of photosynthetic bacteria. SIL Proceedings 1922-2010:22. https://doi.org/10.1080/03680770.1983.11897499

    Article  Google Scholar 

  • Buchaca T, Kosten S, Lacerot G et al (2019) Pigments in surface sediments of South American shallow lakes as an integrative proxy for primary producers and their drivers. Freshw Biol 64. https://doi.org/10.1111/fwb.13317

  • Buzelli GM, da Cunha-Santino MB (2013) Diagnosis and analysis of water quality and trophic state of Barra Bonita reservoir. SP. Revista Ambiente e Agua 8. https://doi.org/10.4136/ambi-agua.930

  • Campregher R, Martins RC (2017) O “Modelo Broa” e a produção de conhecimento científico sobre o meio ambiente. Desenvolvimento e Meio Ambiente 40. https://doi.org/10.5380/dma.v40i0.49243

  • Cardoso-Silva S, Ferreira PADL, Figueira RCL et al (2018) Factors that control the spatial and temporal distributions of phosphorus, nitrogen, and carbon in the sediments of a tropical reservoir. Environ Sci Pollut Res 25:31776–31789

    Article  CAS  Google Scholar 

  • Cardoso-Silva S, Ferreira T, Pompêo MLM (2013) Diretiva quadro d’água: Uma revisão crítica e a possibilidade de aplicação ao brazil. Ambiente e Sociedade 16. https://doi.org/10.1590/S1414-753X2013000100004

  • Cardoso-Silva S, Mizael JO, Frascareli D et al (2021) Paleolimnological evidence of environmental changes in seven subtropical reservoirs based on metals, nutrients, and sedimentation rates. Catena (Amst) 206. https://doi.org/10.1016/j.catena.2021.105432

  • Cardoso-Silva S, Mizael JOSS, Frascareli D et al (2022) Geochemistry and sedimentary photopigments as proxies to reconstruct past environmental changes in a subtropical reservoir. Environ Sci Pollut Res 29. https://doi.org/10.1007/s11356-022-18518-2

  • Casali SP, Dos Santos ACA, De Falco PB, Do Carmo Calijuri M (2017) Influence of environmental variables on saxitoxin yields by Cylindrospermopsis raciborskii in a mesotrophic subtropical reservoir. J Water Health 15. https://doi.org/10.2166/wh.2017.266

  • Cazotti RI, Gomes ACF, Nascimento M, Mozeto A (2006) Geocronologia isotópica (210 Pb e 226Ra) de sedimentos límnicos: determinação de velocidades e taxas de sedimentação, e de idades. In: Mozeto A, Umbuzeiro G, Wilson J (eds) Métodos de coleta, análises físico-químicas e ensaios biológicos e ecotoxicológicos de sedimentos de água doce, 1st edn. Cubo, São Carlos, pp 37–57

    Google Scholar 

  • CETESB (2016) Relatório de qualidade das águas interiores do Estado de São Paulo 2015. Cetesb, São Paulo

  • Chen N, Bianchi TS, Bland JM (2003) Implications for the role of pre- versus post-depositional transformation of chlorophyll-a in the Lower Mississippi River and Louisiana shelf. Mar Chem 81. https://doi.org/10.1016/S0304-4203(02)00138-X

  • Chen N, Bianchi TS, McKee BA (2005) Early diagenesis of chloropigment biomarkers in the lower Mississippi River and Louisiana shelf: Implications for carbon cycling in a river-dominated margin. Mar Chem 93. https://doi.org/10.1016/j.marchem.2004.08.005

  • Chen N, Bianchi TS, McKee BA, Bland JM (2001) Historical trends of hypoxia on the Louisiana shelf: application of pigments as biomarkers. Org Geochem 32. https://doi.org/10.1016/S0146-6380(00)00194-7

  • Cunha DGF, Calijuri MDC (2011) Variação sazonal dos grupos funcionais fitoplanctônicos em braços de um reservatório tropical de usos múltiplos no estado de são paulo (Brasil). Acta Bot Bras 25. https://doi.org/10.1590/S0102-33062011000400009

  • da Anjinho PS, MAGA B, Costa CW, Mauad FF (2021) Environmental fragility analysis in reservoir drainage basin land use planning: a Brazilian basin case study. Land Use Policy 100. https://doi.org/10.1016/j.landusepol.2020.104946

  • David GS, Castro Campanha PMG, de Maruyama LS, Carvalho ED (2016) Artes de pesca artesanal nos reservatórios de Barra Bonita e Bariri: monitoramento pesqueiro na Bacia do Médio Rio Tietê. Bol Inst Pesca 42. https://doi.org/10.20950/1678-2305.2016v42n1p29

  • De Souza Beghelli FG, Frascareli D, Pompêo MLM, Moschini-Carlos V (2016) Trophic state evolution over 15 years in a tropical reservoir with low nitrogen concentrations and cyanobacteria predominance. Water Air Soil Pollut 227. https://doi.org/10.1007/s11270-016-2795-1

  • dos Santos ML, Dörr F, Dörr FA et al (2022) Permanent occurrence of Raphidiopsis raciborskii and cyanotoxins in a subtropical reservoir polluted by domestic effluents (Itupararanga reservoir, São Paulo, Brazil). Environ Sci Pollut Res 29. https://doi.org/10.1007/s11356-021-16994-6

  • Fogg GE, Belcher JH (1961) Pigments from the bottom deposits of an English Lake. New Phytologist 60. https://doi.org/10.1111/j.1469-8137.1961.tb06246.x

  • Fonseca MF, Matias LF (2015) ANÁLISE DO USO DA TERRA E DO COMPONENTE CLINOGRÁFICO POR MEIO DE GEOPROCESSAMENTO: O ENTORNO DO RESERVATÓRIO DE SALTO GRANDE - SP. Boletim de Geografia 32. https://doi.org/10.4025/bolgeogr.v32i3.20888

  • Frascareli D, Beghelli FGDS, Da Silva SC, Carlos VM (2015) Heterogeneidade espacial e temporal de variáveis limnológicas no reservatório de Itupararanga associadas com o uso do solo na Bacia do Alto Sorocaba-SP. Revista Ambiente Água 10. https://doi.org/10.4136/ambi-agua.1715

  • Frascareli D, Cardoso-Silva S, de Oliveira Soares-Silva Mizael J et al (2018) Spatial distribution, bioavailability, and toxicity of metals in surface sediments of tropical reservoirs, Brazil. Environ Monit Assess 190. https://doi.org/10.1007/s10661-018-6515-8

  • Gasparini Fernandes Cunha D, de Melo F, Lima V, Menegante Néri A et al (2017) Uptake rates of ammonium and nitrate by phytoplankton communities in two eutrophic tropical reservoirs. Int Rev Hydrobiol 102. https://doi.org/10.1002/iroh.201701900

  • Gomes MN, Perbiche-Neves G, Naliato DA (2012) Limnology of two contrasting hydroelectric reservoirs (storage and run-of-river) in Southeast Brazil. In: Samadi-Boroujeni, H (ed) Hydropower - practice and application, 1st edn. In Tech, London, pp 167 -184

  • Guilizzoni P, Massaferro J, Lami A et al (2009) Palaeolimnology of Lake Hess (Patagonia, Argentina): multi-proxy analyses of short sediment cores. Hydrobiologia 631. https://doi.org/10.1007/s10750-009-9818-5

  • Halac S, Mengo L, Guerra L et al (2020) Paleolimnological reconstruction of the centennial eutrophication processes in a sub-tropical South American reservoir. J South Am Earth Sci 103. https://doi.org/10.1016/j.jsames.2020.102707

  • Hammer Ø, Harper DAT, Ryan PD (2001) Past: Paleontological Statistics Software Package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hou D, He J, Lü C et al (2014) Spatial variations and distributions of phosphorus and nitrogen in bottom sediments from a typical north-temperate lake, China. Environ Earth Sci 71. https://doi.org/10.1007/s12665-013-2683-6

  • Itoh N, Tani Y, Nagatani T, Soma M (2003) Phototrophic activity and redox condition in Lake Hamana, Japan, indicated by sedimentary photosynthetic pigments and molybdenum over the last ∼250 years. J Paleolimnol 29. https://doi.org/10.1023/A:1024407210928

  • Jeffrey SW, Mantoura RFC, Wright SW (1997) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, Paris

    Google Scholar 

  • Jiménez L, Romero-Viana L, Conde-Porcuna JM, Martínez CP (2015) Sedimentary photosynthetic pigments as indicators of climate and watershed perturbations in an alpine lake in southern Spain. Limnetica 34. https://doi.org/10.23818/limn.34.33

  • Laissaoui A, Mas JL, Hurtado S et al (2013) Radionuclide activities and metal concentrations in sediments of the Sebou Estuary, NW Morocco, following a flooding event. Environ Monit Assess 185. https://doi.org/10.1007/s10661-012-2922-4

  • Lan C, Ji Y, Wang J, Yang H (2021) Water quality restoration of a drinking water outlet area in a eutrophic reservoir using hypolimnetic oxygenation in Southwest China. Pol J Environ Stud 30. https://doi.org/10.15244/pjoes/124776

  • Leavitt PR, Findlay DL (1994) Comparison of fossil pigments with 20 years of phytoplankton data from eutrophic Lake 227, Experimental Lakes Area, Ontario. Can J Fish Aquat Sci 51. https://doi.org/10.1139/f94-232

  • Leavitt PR, Hodgson DA (2001AD) Sedimentary pigments. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Volume 3: Terrestrial, algal, and siliceous indicators, 1st Kluwer Academic Publishers, Dordrecht, pp 295–325

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, Amsterdam

    Google Scholar 

  • Leme-Pompeu S, Mucare W (1983) A hundred years of Barra Bonita History. <https://barrabonita.sp.gov.br/?page=livro-100-anos-de-historia>

  • Louda JW, Li J, Liu L, et al (1998) Chlorophyll-a degradation during cellular senescence and death. In: Org Geochem 29. https://doi.org/10.1016/S0146-6380(98)00186-7

  • Makri S, Lami A, Lods-Crozet B, Loizeau JL (2019) Reconstruction of trophic state shifts over the past 90 years in a eutrophicated lake in western Switzerland, inferred from the sedimentary record of photosynthetic pigments. J Paleolimnol 61. https://doi.org/10.1007/s10933-018-0049-5

  • Manfredini FN, Guandique MEG, Rosa AH (2015) A história ambiental de Sorocaba. Sorocaba: Unesp – Câmpus Experimental de Sorocaba. Unesp- <http://www.sorocaba.unesp.br/Home/Eventos191/historia-ambiental-editora-ebook.pdf>, Sorocaba

  • Mariani CF, Pompêo MLM (2008) Potentially bioavailable metals in sediment from a tropical polymictic environment-Rio Grande Reservoir, Brazil. J Soils Sediments 8. https://doi.org/10.1007/s11368-008-0018-0

  • Martins D, Marchi SR, Costa NV et al (2011) Levantamento de plantas aquáticas no reservatório de salto grande. Americana-SP. Planta Daninha 29. https://doi.org/10.1590/S0100-83582011000100025

  • Meguro M (2000) Metodos em Ecologia. Universidade de São Paulo, São Paulo.

    Google Scholar 

  • Minhoni RTDA, Pinheiro MPMA, Filgueiras R, Zimback CRL (2017) Sensoriamento remoto aplicado ao monitoramento de macrófitas aquáticas no reservatório de barra, Bonita, SP. IRRIGA 22:. https://doi.org/10.15809/irriga.2017v22n2p330-342

  • Mizael JD, Cardoso-Silva S, Frascareli D et al (2020) Ecosystem history of a tropical reservoir revealed by metals, nutrients and photosynthetic pigments preserved in sediments. Catena (Amst) 184. https://doi.org/10.1016/j.catena.2019.104242

  • Moraes MD, Rodrigues RD, Podduturi R et al (2023) Prediction of cyanotoxin episodes in freshwater: a case study on microcystin and saxitoxin in the Lobo Reservoir, São Paulo State, Brazil. Environments - MDPI 10. https://doi.org/10.3390/environments10080143

  • Mosley LM (2015) Drought impacts on the water quality of freshwater systems; review and integration. Earth Sci Rev 140. https://doi.org/10.1016/j.earscirev.2014.11.010

  • Nishimura PY, Moschini-Carlos V, Pompêo MLM et al (2008) Phytoplankton primary productivity in Rio Grande and Taquacetuba branches (Billings Reservoir, Sao Paulo, Brazil). SIL Proceedings 1922-2010:30. https://doi.org/10.1080/03680770.2008.11902081

    Article  Google Scholar 

  • Overmann J, Sandmann G, Hall KJ, Northcote TG (1993) Fossil carotenoids and paleolimnology of meromictic Mahoney Lake, British Columbia, Canada. Aquat Sci 55. https://doi.org/10.1007/BF00877257

  • Pamplona-Silva MT, Gonçalves LC, Marin-Morales MA (2018) Genetic toxicity of water contaminated by microcystins collected during a cyanobacteria bloom. Ecotoxicol Environ Saf 166. https://doi.org/10.1016/j.ecoenv.2018.09.090

  • Periotto NA, Tundisi JG (2013) Ecosystem Services of UHE Carlos Botelho (Lobo/Broa): a new approach for management and planning of dams multiple-uses. Braz J Biol 73. https://doi.org/10.1590/s1519-69842013000300003

  • Pompêo M, Moschini-Carlos V (2022) Assessment of water quality degradation in the Carlos Botelho Reservoir (Broa) (Itirapina, São Paulo State, Brazil), using Sentinel 2 satellite images. Engenharia Sanitaria e Ambiental 27. https://doi.org/10.1590/S1413-415220210002

  • Reuss N, Conley DJ, Bianchi TS (2005) Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstruction in four Northern European estuaries. Mar Chem 95. https://doi.org/10.1016/j.marchem.2004.10.002

  • Reuss NS, Anderson NJ, Fritz SC, Simpson GL (2013) Responses of microbial phototrophs to late-Holocene environmental forcing of lakes in south-west Greenland. Freshw Biol 58. https://doi.org/10.1111/fwb.12073

  • Reuss NS, Hammarlund D, Rundgren M et al (2010) Lake ecosystem responses to Holocene climate change at the subarctic tree-line in Northern Sweden. Ecosystems 13. https://doi.org/10.1007/s10021-010-9326-5

  • Reynolds CS (2006) The ecology of Phytoplankton. Cambridge University, Cambridge

  • Rocha Junior CA, Costa MR, Menezes RF et al (2018) Water volume reduction increases eutrophication risk in tropical semi-arid reservoirs. Acta Limnol Bras 30. https://doi.org/10.1590/s2179-975x2117

  • Rodrigues EHC, Vicentin AM, Machado LDS et al (2019) Phytoplankton, trophic state and ecological potential in reservoirs in the State of São Paulo, Brazil. Revista Ambiente e Agua 14. https://doi.org/10.4136/ambi-agua.2428

  • Romero-Viana L, Keely BJ, Camacho A et al (2009) Photoautotrophic community changes in Lagunillo del Tejo (Spain) in response to lake level fluctuation: two centuries of sedimentary pigment records. Org Geochem 40. https://doi.org/10.1016/j.orggeochem.2008.11.010

  • Rosen MR, Van Metre PC (2010) Assessment of multiple sources of anthropogenic and natural chemical inputs to a morphologically complex basin, Lake Mead, USA. Palaeogeogr Palaeoclimatol Palaeoecol 294. https://doi.org/10.1016/j.palaeo.2009.03.017

  • Rowan KS (1989) Photosynthetic pigments of algae. Cambridge University, Cambridge

    Google Scholar 

  • Sanger JE (1988) Fossil pigments in paleoecology and paleolimnology. Palaeogeogr Palaeoclimatol Palaeoecol 62. https://doi.org/10.1016/0031-0182(88)90061-2

  • Schubert N, García-Mendoza E (2008) Photo inhibition in red algal species with different carotenoid profiles. J Phycol 44. https://doi.org/10.1111/j.1529-8817.2008.00590.x

  • Schüller SE, Allison MA, Bianchi TS et al (2013) Historical variability in past phytoplankton abundance and composition in Doubtful Sound, New Zealand. Cont Shelf Res 69. https://doi.org/10.1016/j.csr.2013.09.021

  • Shotbolt L, Hutchinson SM, Thomas AD (2006) Sediment stratigraphy and heavy metal fluxes to reservoirs in the southern Pennine uplands, UK. J Paleolimnol 35. https://doi.org/10.1007/s10933-005-1594-2

  • Silva RT (2015) Águas e saneamento na macro metrópole paulista: o desafio da integração de escopos. Rev Iberoamerican Urbanism 12:137–157

    Google Scholar 

  • Silva SC, Nishimura PY, Padial PR et al (2014) Compartimentalização e qualidade da água : o caso da Represa Billings. Bioikos 28. https://periodicos.puc-campinas.edu.br/bioikos/issue/view/293 Acessed 15 January 2024

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24. https://doi.org/10.1016/j.tree.2008.11.009

  • Strokal M, Kahil T, Wada Y, Albiac J, Bai Z, Ermolieva T, Langan S, Ma L, Oenema O, Wagner F, Zhu X, Kroeze C (2020) Cost-effective management of coastal eutrophication: A case study for the Yangtze river basin. Resour. Conserv. Recycl. 154. https://doi.org/10.1016/j.resconrec.2019.104635

  • Squier AH, Hodgson DA, Keely BJ (2002) Sedimentary pigments as markers for environmental change in an Antarctic lake. Org Geochem 33. https://doi.org/10.1016/S0146-6380(02)00177-8

  • Tse TJ, Doig LE, Leavitt PR et al (2015) Long-term spatial trends in sedimentary algal pigments in a narrow river-valley reservoir, Lake Diefenbaker, Canada. J Great Lakes Res 41. https://doi.org/10.1016/j.jglr.2015.08.002

  • Tundisi JG, Matsumura-Tundisi T (2013) The ecology of UHE Carlos Botelho (Lobo-Broa Reservoir) and its watershed, São Paulo, Brazil. Freshw Rev 6. https://doi.org/10.1608/frj-6.2.727

  • Tundisi JG, Matsumura-Tundisi T, Tundisi JEM et al (2015) A bloom of cyanobacteria (Cylindrospermopsis raciborskii) in UHE Carlos Botelho (Lobo/Broa) reservoir: a consequence of global change? Braz J Biol 75.https://doi.org/10.1590/1519-6984.24914

    Article  CAS  Google Scholar 

  • US EPA United States Environmental Protection Agency (1996) Method 3050B. Acid digestion of sediments, sludges and soil. . Revision 2. December. https://www.epa.gov/sites/default/files/2015-06/documents/epa-3050b.pdf. Accessed 26 January 2015

  • Vallentyne JR (1957) Carotenoids in a 20,000-year-old sediment from Searles Lake, California. Arch Biochem Biophys 70. https://doi.org/10.1016/0003-9861(57)90076-0

  • van Vliet MTH, Zwolsman JJG (2008) Impact of summer droughts on the water quality of the Meuse river. J Hydrol (Amst) 353. https://doi.org/10.1016/j.jhydrol.2008.01.001

  • Vicentin AM, Rodrigues EHC, Moschini-Carlos V, Pompêo MLM (2018) Is it possible to evaluate the ecological status of a reservoir using the phytoplankton community? Acta Limnol Bras 30. https://doi.org/10.1590/s2179-975X13717

  • Wengrat S, Bennion H, de Ferreira PAL et al (2019) Assessing the degree of ecological change and baselines for reservoirs: challenges and implications for management. J Paleolimnol 62. https://doi.org/10.1007/s10933-019-00090-4

  • Wright SW (2005) Analysis of phytoplankton populations using pigment markers. Workshop on pigment analysis of Antarctic microorganisms. University of Malaya, June 20-July 1

  • Xue L, Hou P, Zhang Z et al (2020) Application of systematic strategy for agricultural non-point source pollution control in Yangtze River basin, China. Agric Ecosyst Environ 304. https://doi.org/10.1016/j.agee.2020.107148

  • Yacobi YZ, RFC M, Llewellyn CA (1991) The distribution of chlorophylls, carotenoids and their breakdown products in Lake Kinneret (Israel) sediments. Freshw Biol 26. https://doi.org/10.1111/j.1365-2427.1991.tb00503.x

  • Züllig H (1981) On the use of carotenoid stratigraphy in lake sediments for detecting past developments of phytoplankton. Limnol Oceanogr 26. https://doi.org/10.4319/lo.1981.26.5.0970

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the UNESP Post-Doctoral Program (PROPe 13/2022), the Department of Environmental Engineering (ICTS- UNESP); the Ecology Department at the Biosciences Institute of the University of Sao Paulo, and the Chemistry Department at the Oceanographic Institute of the University of Sao Paulo. The authors thank two anonymous reviewers for their constructive comments which have improved the quality of our manuscript.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Funding

Financial support for this work was provided by FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo, grants 2014/22581–8, 2016/17266–1, 2016/15397–1, and 2019/10845–4), CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, PNPD and DAAD grant 88887.165060/2018–00), and the UNESP Post-Doctoral Program (PROPe 13/2022).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design as follows: Sheila Cardoso-Silva: conceptualization, writing original draft, formal analysis, investigation, and editing; Juliana Oliveira Soares Silva Mizael: conceptualization, writing original draft, formal analysis, and investigation; Paulo Alves de Lima Ferreira: formal analysis and writing review; Daniele Frascareli: formal analysis, investigation, and writing review. Rubens Cesar Lopes Figueira: formal analysis and writing review. Eduardo Vicente: formal analysis and writing review. Marcelo Pompeo: supervision, funding acquisition, project administration, and writing review. Viviane Moschini-Carlos: supervision, funding acquisition, project administration, and writing review. All authors commented, read, and approved the final manuscript.

Corresponding author

Correspondence to Sheila Cardoso-Silva.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Thomas Hein

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 49 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso-Silva, ., Mizael, J.S.S., Frascareli, D. et al. Past environmental changes: using sedimentary photosynthetic pigments to enhance subtropical reservoir management. Environ Sci Pollut Res 31, 22994–23010 (2024). https://doi.org/10.1007/s11356-024-32574-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32574-w

Keywords

Navigation