Skip to main content
Log in

Degradation of sulfamethazine by microbial electrolysis cell with nickel–cobalt co-modified biocathode

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, nickel–cobalt co-modified stainless steel mesh (Ni-Co@SSM) was prepared and used as the biocathode in microbial electrolysis cell (MEC) for sulfamethazine (SMT) degradation. The optimal electrochemical performance of the Ni-Co@SSM was obtained at the electrodeposition time of 600 s, electrodeposition current density of 20 mA cm−2, and nickel–cobalt molar ratio of 1:2. The removal of SMT in MEC with the Ni-Co@SSM biocathode (MEC-Ni-Co@SSM) was 82%, which increased by 30% compared with the conventional anaerobic reactor. Thirteen intermediates were identified and the potential degradation pathways of SMT were proposed. Proteobacteria, Firmicutes, Patescibacteria, Chloroflexi, Bacteroidetes, and Euryarchaeota are the dominant bacteria at the phylum level in the MEC-Ni-Co@SSM, which are responsible for SMT metabolism. Due to the electrical stimulation, there was an increase in the abundance of the metabolic function and the genetic information processing. This work provides valuable insight into utilizing MECs for effective treatment of antibiotic-containing wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Agrahari R, Bayar B, Abubackar HN, Giri BS, Rene ER, Rani R (2022) Advances in the development of electrode materials for improving the reactor kinetics in microbial fuel cells. Chemosphere 290:133184

    Article  CAS  PubMed  Google Scholar 

  • Al Mohamad D, Goeman JJ, van Zwet EW (2022) Simultaneous confidence intervals for ranks with application to ranking institutions. Biometrics 78:238–247

    Article  MathSciNet  PubMed  Google Scholar 

  • Basak B, Patil SM, Kumar R, Ahn Y, Ha G-S, Park Y-K, Ali Khan M, Jin Chung W, Woong Chang S, Jeon B-H (2022) Syntrophic bacteria- and Methanosarcina-rich acclimatized microbiota with better carbohydrate metabolism enhances biomethanation of fractionated lignocellulosic biocomponents. Bioresour Technol 360:127602

    Article  CAS  PubMed  Google Scholar 

  • Bora A, Mohanrasu K, Angelin Swetha T, Ananthi V, Sindhu R, Chi NTL, Pugazhendhi A, Arun A, Mathimani T (2022) Microbial electrolysis cell (MEC): reactor configurations, recent advances and strategies in biohydrogen production. Fuel 328:125269

    Article  CAS  Google Scholar 

  • Boxall ABA, Blackwell P, Cavallo R, Kay P, Tolls J (2002) The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol Lett 131:19–28

    Article  CAS  PubMed  Google Scholar 

  • Cai P, Zhao J, Zhang X, Zhang T, Yin G, Chen S, Dong C-L, Huang Y-C, Sun Y, Yang D, Xing B (2022) Synergy between cobalt and nickel on NiCo2O4 nanosheets promotes peroxymonosulfate activation for efficient norfloxacin degradation. Appl Catal b: Environ 306:121091

    Article  CAS  Google Scholar 

  • Caicedo HH, Hashimoto DA, Caicedo JC, Pentland A, Pisano GP (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:669–673

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Zhang J, Zhao R, Deng Y, Liu J, Fu W, Lei Y, Zhang T, Li X, Li B (2019) Genomic characterization, kinetics, and pathways of sulfamethazine biodegradation by Paenarthrobacter sp. A01. Environ Int 131:104961

  • Chen J, Zhou X, Zhang Y, Gao H (2012) Potential toxicity of sulfanilamide antibiotic: binding of sulfamethazine to human serum albumin. Sci Total Environ 432:269–274

    Article  ADS  CAS  PubMed  Google Scholar 

  • Cui Y, Lin J, Xu Y, Li Q, Chen Y, Ding L (2021) Hydrophilic crosslinking agent-incorporated magnetic imprinted materials with enhanced selectivity for sulfamethazine adsorption. Sep Purif Technol 276:119302

    Article  CAS  Google Scholar 

  • De Liguoro M, Fioretto B, Poltronieri C, Gallina G (2009) The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim. Chemosphere 75:1519–1524

    Article  ADS  PubMed  Google Scholar 

  • Fan Y, Ji Y, Kong D, Lu J, Zhou Q (2015) Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process. J Hazard Mater 300:39–47

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Kong X, Zhou A, Yue X, Luo Y, Defemur Z (2020) Enhanced degradation of quinoline by coupling microbial electrolysis cell with anaerobic digestion simultaneous. Bioresour Technol 306:123077

    Article  CAS  PubMed  Google Scholar 

  • Gautam R, Nayak JK, Ress NV, Steinberger-Wilckens R, Ghosh UK (2023) Bio-hydrogen production through microbial electrolysis cell: structural components and influencing factors. Chem Eng J 455:140535

    Article  CAS  Google Scholar 

  • Geetanjali DSK, Kundu PP (2022) Development of polypyrrole nanotube coated with chitosan and nickel oxide as a biocompatible anode to enhance the power generation in microbial fuel cell. J Power Sources 539:231595

    Article  CAS  Google Scholar 

  • Hemdan BA, Jadhav DA, Dutta A, Goswami P (2023) Facilitating the electrochemical characterization and biofilm enrichment through anode modification in microbial fuel cells. J Water Process Eng 54:104065

    Article  Google Scholar 

  • Hou L, Yin G, Liu M, Zhou J, Zheng Y, Gao J, Zong H, Yang Y, Gao L, Tong C (2014) Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments. Environ Sci Technol 49:326–333

    Article  ADS  PubMed  Google Scholar 

  • Hou H, Duan L, Zhou B, Tian Y, Wei J, Qian F (2020) The performance and degradation mechanism of sulfamethazine from wastewater using IFAS-MBR. Chinese Chem Lett 31:543–546

    Article  CAS  Google Scholar 

  • Li J, Xu M, Yao G, Lai B (2018) Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: kinetic, degradation intermediates, and toxicity evaluation. Chem Eng J 348:1012–1024

    Article  CAS  Google Scholar 

  • Li J, Li A, Li Y, Cai M, Luo G, Wu Y, Tian Y, Xing L, Zhang Q (2021a) PICRUSt2 functionally predicts organic compounds degradation and sulfate reduction pathways in an acidogenic bioreactor. Front Environ Sci Eng 16:47

    Article  Google Scholar 

  • Li Y, Dong H, Li L, Xiao J, Xiao S, Jin Z (2021b) Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite. Water Res 202:117451

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Qi J, Shen J, Yan P, Kang J, Wang B, Wang S, Zuo J, Chen Z (2022) Interface mechanism of peroxymonosulfate activation by cobalt-copper-ferrite nanoparticles mediated by palygorskite for bisphenol S degradation: a dual-path activation mechanism. Chem Eng J 448:137609

    Article  CAS  Google Scholar 

  • Liu X, Yang H, Chang J, Bai Y, Shi L, Su B, Han J, Liang D (2022) Re-hydrolysis characteristics of alkaline fermentation liquid from waste activated sludge: feasibility as a carbon source for nitrogen removal. Process Saf Environ 165:230–240

    Article  CAS  Google Scholar 

  • Luo R, Li Y, Xing L, Zhong R, Qian Z, Yin G, Wang Y, Du L (2022) A dynamic Ni(OH)2-NiOOH/NiFeP heterojunction enabling high-performance E-upgrading of hydroxymethylfurfural. Appl Catal b: Environ 311:121357

    Article  CAS  Google Scholar 

  • Mulla SI, Bagewadi ZK, Faniband B, Bilal M, Chae J-C, Bankole PO, Saratale GD, Bhargava RN, Gurumurthy DM (2023) Various strategies applied for the removal of emerging micropollutant sulfamethazine: a systematic review. Environ Sci Pollut Res 30:71599–71613

    Article  CAS  Google Scholar 

  • Ochiai I, Harada T, Jomori S, Kouzuma A, Watanabe K (2023) Bioaugmentation of microbial electrolysis cells with Geobacter sulfurreducens YM18 for enhanced hydrogen production from starch. Bioresour Technol 386:129508

    Article  CAS  PubMed  Google Scholar 

  • Ovung A, Bhattacharyya J (2021) Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions. Biophys Rev 13:259–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovung A, Bhattacharyya J (2022) Binding effects of antibiotic drug sulfamethazine on the serum albumins: multi-spectroscopic and computation approach. Chem Phys Impact 5:100087

    Article  Google Scholar 

  • Ovung A, Mavani A, Ghosh A, Chatterjee S, Das A, Suresh Kumar G, Ray D, Aswal VK, Bhattacharyya J (2022) Heme Protein binding of sulfonamide compounds: a correlation study by spectroscopic, calorimetric, and computational methods. ACS Omega 7:4932–4944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu L, Wu J, Qian Y, Nafees M, Zhang J, Du W, Yin Y, Guo H (2021) Impact of biochar-induced vertical mobilization of dissolved organic matter, sulfamethazine and antibiotic resistance genes variation in a soil-plant system. J Hazard Mater 417:126022

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Uriguen M, Shuai W, Huang S, Jaffe PR (2022) Biodegradation of PFOA in microbial electrolysis cells by Acidimicrobiaceae sp. strain A6. Chemosphere 292:133506.

  • San-Martin MI, Escapa A, Alonso RM, Canle M, Moran A (2020) Degradation of 2-mercaptobenzothizaole in microbial electrolysis cells: intermediates, toxicity, and microbial communities. Sci Total Environ 733:139155

    Article  ADS  CAS  PubMed  Google Scholar 

  • Saratale RG, Cho SK, Saratale GD, Ghodake GS, Bharagava RN, Kim DS, Nair S, Shin HS (2021) Efficient bioconversion of sugarcane bagasse into polyhydroxybutyrate (PHB) by Lysinibacillus sp. and its characterization. Bioresour Technol 324:124673

  • Shi K, Cheng W, Jiang Q, Xue J, Qiao Y, Cheng D (2022) Insight of the bio-cathode biofilm construction in microbial electrolysis cell dealing with sulfate-containing wastewater. Bioresour Technol 361:127695

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Zhuang H, Xiao Z, Suo D (2021) Residue accumulation, distribution, and withdrawal period of sulfamethazine and N-acetylsulfamethazine in poultry waste from broilers. Chemosphere 278:130420

    Article  CAS  Google Scholar 

  • Srivastava P, González C, Palma J, Garcia-Quismondo E (2023) Nanoporous oxide coating on carbon paper electrodes to enable bio-hydrogen production in microbial electrolysis cells. Catal Today 422:114246

    Article  CAS  Google Scholar 

  • Tačić A, Nikolić V, Nikolić L, Savić I (2017) Antimicrobial Sulfonamide Drugs Adv Technologies 6:58–71

    Article  Google Scholar 

  • Thapa BS, Kim T, Pandit S, Song YE, Afsharian YP, Rahimnejad M, Kim JR, Oh S-E (2022) Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry. Bioresour Technol 347:126579

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Li Q, Li Y, Xing Y, Yao G, Liu Y, Chen R, Wang XC (2020) Redox-active biochar facilitates potential electron tranfer between syntrophic partners to enhance anaerobic digestion under high organic loading rate. Bioresour Technol 298:122524

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Chen N, Feng C, Deng Y (2021) Insights into heterotrophic denitrification diversity in wastewater treatment systems: progress and future prospects based on different carbon sources. Sci Total Environ 780:146521

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wang N, Feng Y, Li YZ, L, Liu J, Li N, He W, (2022) Effects of ammonia on electrochemical active biofilm in microbial electrolysis cells for synthetic swine wastewater treatment. Water Res 219:118570

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Li W, Luo J, Chen L, He K, Ma D, Lv S, Xing D (2023) Carbon-based materials as highly efficient catalysts for the hydrogen evolution reaction in microbial electrolysis cells: mechanisms, methods, and perspectives. Chem Eng J 471:144670

    Article  CAS  Google Scholar 

  • Yin R, Guo W, Wang H, Du J, Zhou X, Wu Q, Zheng H, Chang J, Ren N (2018) Enhanced peroxymonosulfate activation for sulfamethazine degradation by ultrasound irradiation: performances and mechanisms. Chem Eng J 335:145–153

    Article  CAS  Google Scholar 

  • Ying Z, Yu Y, Chen H, Zhao J, You J, Ye J, Hu J, Zhang S (2023) Structural characteristics and functional genes of biofilms in microbial electrolysis cells for chlorobenzene abatement. ACS ES&T Water 3:500–509

    Article  CAS  Google Scholar 

  • Zhang Y, Cao L, Fu H, Zhang M, Meng J, Althakafy JT, Abo-Dief HM, El-Bahy SM, Zhang Y, Wei H, Xu BB, Guo Z (2022) Effect of sulfamethazine on anaerobic digestion of manure mediated by biochar. Chemosphere 306:135567

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, An H, Dong G, Feng J, Wei T, Ren Y, Ma J (2020) Oxygen vacancies induced heterogeneous catalysis of peroxymonosulfate by Ni-doped AgFeO2 materials: evolution of reactive oxygen species and mechanism. Chem Eng J 388:124371

    Article  CAS  Google Scholar 

  • Zhao J, Luan Y, Chen Y, Cheng L, Qin Q (2022) Toxicological and transcriptomic-based analysis of monensin and sulfamethazine co-exposure on male SD rats. Ecotoxicol Environ Saf 245:114110

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Li X, Xu Y, Qi Y, Wei Q, Jia X (2023) Effects of Fe-Co@N-BC anode on degradation of sulfamethoxazole (SMX) in microbial fuel cells. J Water Process Eng 52:103569

    Article  Google Scholar 

  • Zhou Q, Bian Q, Liao L, Yu F, Li D, Tang D, Zhou H (2023) In situ electrochemical dehydrogenation of ultrathin Co(OH)2 nanosheets for enhanced hydrogen evolution. Chinese Chem Lett 34:107248

    Article  CAS  Google Scholar 

  • Zhu J, Liu S, Wang H, Wang D, Zhu Y, Wang J, He Y, Zheng Q, Zhan X (2022) Microplastic particles alter wheat rhizosphere soil microbial community composition and function. J Hazard Mater 436:129176

    Article  CAS  PubMed  Google Scholar 

  • Zhuang S, Chen R, Liu Y, Wang J (2020) Magnetic COFs for the adsorptive removal of diclofenac and sulfamethazine from aqueous solution: adsorption kinetics, isotherms study and DFT calculation. J Hazard Mater 385:121596

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 22166023), the Industrial Support Plan Project of Colleges and Universities in Gansu Province (Grant No. 2023CYZC-30), the Talents Innovation and Entrepreneurship Project of Lanzhou (Grant No. 2021-RC-20), and the National Key Research and Development Innovative methods work special Program of China (SQ2020IM030400).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Yabin Li: data curation, software, writing—original draft and editing. Qian Wei: investigation, methodology, formal analysis, validation, writing—original draft. Xia Zhao: conceptualization, resource, funding acquisition, project administration, writing—review and editing. Yihan Qi: investigation, supervision. Menghan Guo: methodology, software. Weijing Liu: resource, investigation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xia Zhao.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

None of the authors has any objection to participating in the study.

Consent for publication

None of the authors has any objection to publishing the data in the journal.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Angeles Blanco

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wei, Q., Zhao, X. et al. Degradation of sulfamethazine by microbial electrolysis cell with nickel–cobalt co-modified biocathode. Environ Sci Pollut Res 31, 16497–16510 (2024). https://doi.org/10.1007/s11356-024-32313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32313-1

Keywords

Navigation