Skip to main content
Log in

Phytotoxicity assessment of treated vegetable oily wastewater via environmentally coagulation/flocculation and membrane filtration technologies using lettuce (Lactuca sativa) seeds

  • Recent Advances in Environmental Research for the Euro-Mediterranean and Surrounding Regions
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present investigation highlights the necessity of monitoring some basic physico-chemical water quality indicators and their phytotoxic effect using ecotoxicological bioassays such as “seed germination tests.” The phytotoxicity of raw and treated vegetable oil refinery wastewater (VORW) using different treatment processes was assessed through some physiological responses (relative seed germination (RSG), seedling elongation, and germination index (GI)) using Lactuca sativa cultivar. Biotest results of different raw water samples revealed a noticeable correlation between the organic matter content and water phytotoxicity. In fact, VORW showed a very low RSG (17 ± 0.7 to –47 ± 0.58%) and high phytotoxic effects (GI < 50%). The use of coagulation/flocculation (CF) allowed a satisfactory phytotoxicity removal where RSG obtained ranged from 83 ± 1.58 to 90 ± 1.2%. However, the effluent still presents high to moderate phytotoxicity since GI remained below 80% which indicates the presence of toxic elements remaining after CF treatment. When VORW were treated using membrane processes, their phytotoxicity was gradually decreased with the decrease in the membrane pore size. The use of microfiltration membranes (MF), with pore size of 5 µm, 1.2 µm, 0.45 µm, and 0.22 µm, showed RSG values ranged from 37 ± 1.15 to 77 ± 1.68% and GI of less than 80% indicating a moderate to high phytotoxicity. However, the use of ultrafiltration (UF) membranes with molecular weight cut-off (MWCO) of 100 kDa, 30 kDa, and 10 kDa made it possible to achieve an RSG of 100% and an IG exceeding 80% showing that the VORW-treated using UF does not exhibit any phytotoxicity effect. Hence, UF appears to be the most efficient and environmentally friendly technology that could be used for safely treated VORW irrigation purposes compared to CF and MF processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  • Abd-ElGawad AM, El Gendy AENG, Assaeed AM, Al-Rowaily SL, Alharthi AS, Mohamed TA, Elshamy AI (2021) Phytotoxic effects of plant essential oils: a systematic review and structure-activity relationship based on chemometric analyses. Plants 10(1):36. https://doi.org/10.3390/plants10010036

    Article  CAS  Google Scholar 

  • AFNOR (1982) Qualité des sols – Essai d’inhibition de germination de semences par une substance. NF X 31-201

  • Ahmad T, Guria C, Mandal A (2020) A review of oily wastewater treatment using ultrafiltration membrane: a parametric study to enhance the membrane performance. J Water Process Eng 36:101289. https://doi.org/10.1016/j.jwpe.2020.101289

    Article  Google Scholar 

  • Ajermoun N, Aghris S, Ettadili F, Alaoui O, Laghrib F, Farahi A,...& El Mhammedi M A (2022) Phytotoxic effect of the insecticide imidacloprid in Phaseolus vulgaris L. plant and evaluation of its bioaccumulation and translocation by electrochemical methods. Environmental Research, 214, 113794.

  • Akinnawo SO, Ayadi PO, Oluwalope MT (2023) Chemical coagulation and biological techniques for wastewater treatment. Ovidius Univ Annal Chem 34(1):14–21

    Article  CAS  Google Scholar 

  • Alardhi SM, AlJaberi FY, AlSaedi LM (2020) Studying the treatability of different types of nanoparticles for oil content removal from oily wastewater produced from refinery process. Egypt J Chem 63(12):4963–4973. https://doi.org/10.21608/ejchem.2020.11981.1752

    Article  Google Scholar 

  • AlJaberi FY, Abdulmajeed BA, Hassan AA, Ghadban ML (2020) Assessment of an electrocoagulation reactor for the removal of oil content and turbidity from real oily wastewater using response surface method. Recent Innov in Chem Eng 13(1):55–71. https://doi.org/10.2174/2405520412666190830091842

    Article  CAS  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20thedn. American Public Health Association, American Water Works Association and Water Environmental Federation, Washington DC

    Google Scholar 

  • Azuar SA, Hassan HM, Ibrahim MH (2015) Phytotoxicity effect of palm oil mill effluent (POME) on lettuce seed (L. sativa L.) after vermifiltration treatment. Int J Sci Res Publ 5(6):1–5

    Google Scholar 

  • Baoune H, Aparicio JD, Pucci G, Ould El Hadj-Khelil A, Polti MA (2019) Bioremediation of petroleum-contaminated soils using Streptomyces sp. Hlh1. J Soils Sediments 19:2222–2230. https://doi.org/10.1007/s11368-019-02259-w

    Article  CAS  Google Scholar 

  • Bazai ZA, Achakzai AKK (2006) Effect of wastewater from Quetta city on the germination and seedling growth of lettuce (Lactuca sativa L.). J Appl Sci 6(2):380–382. https://doi.org/10.3923/jas.2006.380.382

    Article  Google Scholar 

  • Boonnorat J, Treesubsuntorn C, Phattarapattamawong S, Cherdchoosilapa N, Seemuang-on S, Somjit M,...& Prachanurak P (2021) Effect of leachate effluent water reuse on the phytotoxicity and micropollutants accumulation in agricultural crops. J Environ Chem Eng 9(6): 106639. https://doi.org/10.1016/j.jece.2021.106639

  • Bożym M, Król A, Mizerna K (2021) Leachate and contact test with Lepidium sativum L. to assess the phytotoxicity of waste. Int J Environ Sci Technol 18:1975–1990

    Article  Google Scholar 

  • Capilla X, Bedell JP (2005) Évaluation chimique et biologique du risque phytotoxique lié à la mise en dépôt de sédiments de dragage contaminés. Bullet Des Lab Des Ponts Et Chaussées 258:259

    Google Scholar 

  • Ceschin S, Bellini A, Scalici M (2021) Aquatic plants and ecotoxicological assessment in freshwater ecosystems: a review. Environ Sci Pollut Res 28:4975–4988. https://doi.org/10.1007/s11356-020-11496-3

    Article  CAS  Google Scholar 

  • Charles J, Sancey B, Morin-Crini N, Badot PM, Degiorgi F, Trunfio G, Crini G (2011) Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator. Ecotoxicol Environ Saf 74(7):2057–2064. https://doi.org/10.1016/j.ecoenv.2011.07.025

    Article  CAS  Google Scholar 

  • Coca J, Gutiérrez G, Benito J (2011) Treatment of oily wastewater. In Water Purification and Management (pp. 1–55). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9775-0_1

  • Codex Alimentarius CXS 210-1999 (Corrigendum, 2023). Food Standards Programme- Codex Standard for Named Vegetable Oils; Codex Standards for Fats and Oils from Vegetable Sources. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/fr/?fbclid=IwAR3uDuVWfyJzAnucHd0flMWRI79SrMB64ltLWewmzoVHvWIlrDaa-3Db698

  • Costa AV, Oliveira MVLD, Pinto RT, Moreira LC, Gomes EMC, Alves TDA, Júnior WCDJ (2017) Synthesis of novel glycerol-derived 1, 2, 3-triazoles and evaluation of their fungicide, phytotoxic and cytotoxic activities. Molecules 22(10):1666. https://doi.org/10.3390/molecules22101666

    Article  CAS  Google Scholar 

  • Cozma P, Asiminicesei D M, Hlihor R M, Rosca M, & Gavrilescu M (2019, November) Influence of cadmium and lead ions toxicity on lettuce seeds germination: a preliminary analysis. In 2019 E-Health and Bioengineering Conference (EHB) (pp. 1–4). IEEE. https://doi.org/10.1109/EHB47216.2019.8969968

  • Decloux M, Lameloise ML, Brocard A, Bisson E, Parmentier M, Spiraers A (2007) Treatment of acidic wastewater arising from the refining of vegetable oil by crossflow microfiltration at very low transmembrane pressure. Process Biochem 42(4):693–699. https://doi.org/10.1016/j.procbio.2006.10.013

    Article  CAS  Google Scholar 

  • Dhanke P, Wagh S (2020) Treatment of vegetable oil refinery wastewater with biodegradability index improvement. Mater Today: Proc 27:181–187. https://doi.org/10.1016/j.matpr.2019.10.004

    Article  CAS  Google Scholar 

  • Dkhissi O, El Hakmaoui A, Souabi S, Chatoui M, Jada A, Akssira M (2018) Treatment of vegetable oil refinery wastewater by coagulation-flocculation process using the cactus as a bio-flocculant. J Mater Environ Sci 9(1):18–25. https://doi.org/10.26872/jmes.2018.9.1.3

    Article  CAS  Google Scholar 

  • Do Nascimento GFO, da Costa GRB, de Araújo CMB, Ghislandi MG, da Motta SMA (2020) Graphene-based materials production and application in textile wastewater treatment: color removal and phytotoxicity using Lactuca sativa as bioindicator. J Environ Sci Heal A 55(1):97–106. https://doi.org/10.1080/10934529.2019.1665951

    Article  CAS  Google Scholar 

  • Do Thi VV (2011) Matériaux composites à fibres naturelles/polymère biodégradables ou non. Alimentation et Nutrition. Université de Grenoble; Université des Sciences Naturelles d’Ho Chi Minh Ville,2011.Français. NNT: 2011GRENA012. HALId: tel-00652477. https://theses.hal.science/tel-00652477

  • Donald AE, Chizuruoke DM, Gladys OO (2019) Quality assessment of vegetable oil effluent discharged into a southeastern Nigeria river. Afr J Environ Nat Sci Res 2(1):1–11

    Google Scholar 

  • E P A (1996) Ecological effects test guidelines (OPPTS 850.4200), Seed germination, root elongation toxicity test, US Environmental Protection Agency, Office of Toxic Substances, Washington, D.C.

  • El Ayeb-Zakhama A, Ben Salem S, Sakka-Rouis L, Flamini G, Ben Jannet H, Harzallah-Skhiri F (2014) Chemical composition and phytotoxic effects of essential oils obtained from Ailanthus altissima (Mill.) swingle cultivated in Tunisia. Chem Biodivers 11(8):1216–1227. https://doi.org/10.1002/cbdv.201300409

    Article  CAS  Google Scholar 

  • Elayadi F, El Adlouni C, El Herradi MAE, El Krati M, Tahiri S, Naman MNF (2019) Effects of raw and treated olive mill wastewater (OMW) by coagulation-flocculation, on the germination and the growth of three plant species (wheat, white beans, lettuce). Moroc J Chem 7(1):7–1. https://doi.org/10.48317/IMIST.PRSM/morjchem-v7i1.15077

    Article  Google Scholar 

  • El-taweel R M, Mohamed N, Alrefaey K A, Husien S, Abdel-Aziz A B, Salim A I, ... & Radwan A G (2023) A review of coagulation explaining its definition, mechanism, coagulant types, and optimization models; RSM, and ANN. Current Research in Green and Sustainable Chemistry, 100358. https://doi.org/10.1016/j.crgsc.2023.100358

  • Enaime G, Baçaoui A, Yaacoubi A, Belaqziz M, Wichern M, Lübken M (2020) Phytotoxicity assessment of olive mill wastewater treated by different technologies: effect on seed germination of maize and tomato. Environ Sci Pollut Res 27(8):8034–8045. https://doi.org/10.1007/s11356-019-06672-z

    Article  CAS  Google Scholar 

  • FDA (1987) Food and Drug Administration, Seed germination and root elongation. Environmental Assessment Technical Assistance Document 4.06, the Center for Food Safety and Applied Nutrition and the Center for Veterinary Medicine, U.S. Department of Health and Human Services, Washington, D.C.

  • Ferreira LC, Fernandes JR, Peres JA, Tavares PB, Lucas MS (2021) Wireless UV-A LEDs-driven AOP in the treatment of agro-industrial wastewaters. Environ Res 111430. https://doi.org/10.1016/j.envres.2021.111430

  • Garcias-Morales C, Orozco-Segovia A, Soriano D, Zuloaga-Aguilar S (2021) Effects of in situ burial and sub-optimal storage on seed longevity and reserve resources in sub-tropical mountain cloud forest tree species of Mexico. Trop Conserv Sci 14:1940082921989196

    Article  Google Scholar 

  • Gupta K, Srivastava S, Saxena G, Kumar A (2021) Evaluation of Phytoremediation Potential of Pterisvittata L. on Arsenic Contaminated Soil Using Allium cepa Bioassay. Bull Environ ContamToxicol 108(3):1–7. https://doi.org/10.1007/s00128-021-03291-8

    Article  CAS  Google Scholar 

  • Hailu B, Mehari H (2021) Impacts of soil salinity/sodicity on soil-water relations and plant growth in dry land areas: a review. J Natural Sci Res 12(3):1–10

    Google Scholar 

  • Hakami MW, Alkhudhiri A, Al-Batty S, Zacharof MP, Maddy J, Hilal N (2020) Ceramic microfiltration membranes in wastewater treatment: filtration behavior, fouling and prevention. Membranes 10(9):248. https://doi.org/10.3390/membranes10090248

    Article  CAS  Google Scholar 

  • Hanane H, Abdelhakim RYH, Tayeb N, Nacer F, Lazreg B, Aicha B, Elhouda NN (2019) Effect of lead on the germination of Moringa oleifera L. seeds. Plant Arch 19(2):1597–1602

    Google Scholar 

  • Hashiguchi Y, Zakaria MR, Maeda T, Yusoff MZM, Hassan MA, Shirai Y (2020) Toxicity identification and evaluation of palm oil mill effluent and its effects on the planktonic crustacean Daphnia magna. Sci Total Environ 710:136277. https://doi.org/10.1016/j.scitotenv.2019.136277

    Article  CAS  Google Scholar 

  • Hechmi S, Hamdi H, Mokni‐Tlili S, Ghorbel M, Khelil M N, Zoghlami IR, ... &Jedidi N (2020) Impact of urban sewage sludge on soil physico‐chemical properties and phytotoxicity as influenced by soil texture and reuse conditions 49(4): 973–986).

  • Hirano Y, Frey B, Brunner I (2012) Contrasting reactions of roots of two coniferous tree species to aluminum stress. Environ Exp Bot 77:12–18. https://doi.org/10.1016/j.envexpbot.2011.10.007

    Article  CAS  Google Scholar 

  • Ihaddaden S, Aberkane D, Boukerroui A, Robert D (2022) Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). Journal of Water Process Engineering 49:102952. https://doi.org/10.1016/j.jwpe.2022.102952

    Article  Google Scholar 

  • Iqbal M, Abbas M, Nisar J, Nazir A, Qamar A (2019) Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: a review. Chem Int 5(1):1–80

    CAS  Google Scholar 

  • Ishak SA, Murshed MF, Ismail N, Nasir SNM, Mohd ANN (2019) Combination of Iron Chloride and Polyacrylamide as Coagulant-Flocculants to Remove Pollutants in Dye Wastewater. Int J Integr Eng 11(2):078–086. https://doi.org/10.30880/ijie.2019.11.01.009

    Article  Google Scholar 

  • Iskandar MJ, Baharum A, Anuar FH, Othaman R (2018) Palm oil industry in South East Asia and the effluent treatment technology—a review. Environ Technol Innov 9:169–185

    Article  Google Scholar 

  • Jan R, Asaf S, Khan MA, Kim KM (2023) Effect of mineral nutrition and PGRs on biosynthesis and distribution of secondary plant metabolites under abiotic stress. Medicinal plants: their response to abiotic stress. Singapore, Springer Nature Singapore, pp 287–314

    Chapter  Google Scholar 

  • Jokić S, Suda RR, Svilović S, Vidović S, Bilić MATE, Velić D, Jurković VLATKA (2013) Fatty acid composition of oil obtained from soybeans by extraction with supercritical carbon dioxide. Czech J Food Sci 31(2):116–125. https://doi.org/10.17221/8/2012-CJFS

    Article  Google Scholar 

  • Kang C, Zhao Y, Tang C, Addo-Bankas O (2022) Use of aluminum-based water treatment sludge as coagulant for animal farm wastewater treatment. J Water Proc Eng 46:102645. https://doi.org/10.1016/j.jwpe.2022.102645

    Article  Google Scholar 

  • Karim A, Islam MA, Yousuf A, Khan MMR, Faizal CKM (2019) Microbial lipid accumulation through bioremediation of palm oil mill wastewater by Bacillus cereus. ACS Sustain Chem Eng 7(17):14500–14508

    Article  CAS  Google Scholar 

  • Kastali M, Mouhir L, Chatoui M, Souabi S, Anouzla A (2021) Removal of turbidity and sludge production from industrial process wastewater treatment by a rejection of steel rich in FeCl3 (SIWW). Biointerface Res Appl Chem 11(5):13359–13376

    Article  CAS  Google Scholar 

  • Khouni I, Louhichi G, Ghrabi A, Moulin P (2020) Efficiency of a coagulation/flocculation–membrane filtration hybrid process for the treatment of vegetable oil refinery wastewater for safe reuse and recovery. Process SafEnviron Prot 135:323–341. https://doi.org/10.1016/j.psep.2020.01.004

    Article  CAS  Google Scholar 

  • Koller E (2004) Traitement des pollutions industrielles: eau, air, déchets, sols, boues. Dunod. http://hdl.handle.net/123456789/122983

  • Komilis DP, Karatzas E, Halvadakis CP (2005) The effect of olive mill wastewater on seed germination after various pretreatment techniques. J Environ Manage 74(4):339–348. https://doi.org/10.1016/j.jenvman.2004.09.009

    Article  CAS  Google Scholar 

  • Kučerová K, Henselová M, Slováková Ľ, Hensel K (2019) Effects of plasma activated water on wheat: germination, growth parameters, photosynthetic pigments, soluble protein content, and antioxidant enzymes activity. Plasma Processes Polym 16(3):1800131

    Article  Google Scholar 

  • Kumar V, Shahi SK, Ferreira LFR, Bilal M, Biswas JK, Bulgariu L (2021) Detection and characterization of refractory organic and inorganic pollutants discharged in biomethanated distillery effluent and their phytotoxicity, cytotoxicity, and genotoxicity assessment using Phaseolus aureus L. and Allium cepa L. Environ Res 201:111551

    Article  CAS  Google Scholar 

  • Kwarciak-Kozłowska A, Fijałkowski KL (2021) Efficiency assessment of municipal landfill leachate treatment during advanced oxidation process (AOP) with biochar adsorption (BC). J Environ Manage 287:112309

    Article  Google Scholar 

  • Ladhari A, Zarrelli A, Ghannem M, Ben Mimoun M (2021) Olive wastes as a high-potential by-product: variability of their phenolic profiles, antioxidant and phytotoxic properties. Waste Biomass Valori 12:3657–3669

    Article  CAS  Google Scholar 

  • Łaskawiec EDYTA, Dudziak MARIUSZ, Wyczarska-Kokot J (2018) An evaluation of the phytotoxicity of filter backwash water coagulation products from a pool water system. Environ ProtEng 44(4).https://doi.org/10.5277/epe180403

  • Leiva AM, Albarrán A, López D, Vidal G (2019) Evaluation of phytotoxicity of effluents from activated sludge and constructed wetland system for wastewater reuse. Water Sci Technol 79(4):656–667. https://doi.org/10.2166/wst.2019.093

    Article  CAS  Google Scholar 

  • Lin Q, Fan M, Peng X, Ma J, Zhang Y, Yu F, ... Liu B(2020)Response of Vallisnerianatans to aluminum phytotoxicity and their synergistic effect on nitrogen, phosphorus change in sediments. J Hazard Mater 400: 123167. https://doi.org/10.1016/j.jhazmat.2020.123167

  • Liu B, Luo C, Li X, Gray L, Zhang F, Liu M, ... Lei B(2014) Research on the threshold of aluminum toxicity and the alleviation effects of exogenous calcium, phosphorus, and nitrogen on the growth of Chinese fir seedlings under aluminum stress. Commun. Soil Sci Plant Anal 45(1): 126–139. https://doi.org/10.1080/00103624.2013.841917

  • Lord S J, Velle K B, Mullins R D, & Fritz-Laylin L K (2020) SuperPlots: communicating reproducibility and variability in cell biology. Journal of Cell Biology 219(6). https://doi.org/10.1083/jcb.202001064

  • Louhichi G, Bousselmı L, Ghrabı A, Khounı I (2019) Process optimization viaresponse surface methodology in the physico-chemical treatment of vegetableoil refinery wastewater. Environ Sci Pollut R 26:18993–19011. https://doi.org/10.1007/s11356-018-2657-z

    Article  CAS  Google Scholar 

  • Martinez-Burgos W J, Sydney E B, Medeiros A B P, Magalhães A I, de Carvalho J C, Karp S G, ... &Soccol C R(2021)Agro-industrial wastewater in a circular economy: characteristics, impacts and applications for bioenergy and biochemicals. Bioresource Technology 341: 125795. https://doi.org/10.1016/j.biortech.2021.125795

  • Mazhar S, Ditta A, Bulgariu L, Ahmad I, Ahmed M, Nadiri AA (2019) Sequential treatment of paper and pulp industrial wastewater: prediction of water quality parameters by Mamdani Fuzzy Logic model and phytotoxicity assessment. Chemosphere 227:256–268. https://doi.org/10.1016/j.chemosphere.2019.04.022

    Article  CAS  Google Scholar 

  • Mazumder P, Khwairakpam M, Kalamdhad AS (2020) Bio-inherent attributes of water hyacinth procured from contaminated water body–effect of its compost on seed germination and radicle growth. J Environ Manage 257:109990. https://doi.org/10.1016/j.jenvman.2019.109990

    Article  CAS  Google Scholar 

  • Mendes S A, Frâncica L S, Gonçalves É V, Coleto L B, Nicola J V N, Pestana A C Z, ... & Peron A P (2021) Prospecting for phytotoxicity and enzymatic modulation of waters from springs in the surroundings of Campo Mourão, State of Paraná, Brazil, in Lactuca sativa L. Water, Air, & Soil Pollution 232: 1–10. https://doi.org/10.1007/s11270-021-05003-8

  • Mihoub A, Chaoui A, El Ferjani E (2005) Biochemical changes associated with cadmium and copper stress in germinating pea seeds (Pisum sativum L.). Comptes Rendus Biol 328(1):33–41

    Article  CAS  Google Scholar 

  • Nana R, Maïga Y, Ouédraogo RF, Kaboré WGB, Badiel B, Tamini Z (2019) Effect of Water Quality on the Germination of Okra (Abelmoschusesculentus) Seeds. Int J Agron. 2019:1–7. https://doi.org/10.1155/2019/4938349

    Article  CAS  Google Scholar 

  • Neves LC, de Souza JB, de Souza VCM, Herbert LT, de Souza KV, Martins KG, Young BJ (2020) Phytotoxicity indexes and removal of color, COD, phenols and ISA from pulp and paper mill wastewater post-treated by UV/H2O2 and photo-Fenton. Ecotoxicol Environ Saf 202:110939. https://doi.org/10.1016/j.ecoenv.2020.110939

    Article  CAS  Google Scholar 

  • Niu Z, Wang Z, Wang J, Huang H, Liu W, Zhu H, ... & Liu X (2021) Phytotoxicity and nutrition behavior of process water obtained from the hydrothermal carbonization of poultry litter and its effect on lettuce germination and growth. Environmental Science and Pollution Research, 28, 58123–58134.

  • Nwoko OC, Ogunyemi S, Nkwocha E (2010) Effect of pre-treatment of palm oil mill effluent (POME) and cassava mill effluent (CME) on the growth of tomato (Lycopersicum esculentum). J Appl Sci Envir Manag 14(1):67–72. https://doi.org/10.4314/jasem.v14i1.56493

    Article  Google Scholar 

  • OECD (2003) Organization for Economic Co-Operation and Development, Drafts: Guidance document for the statistical analysis of ecotoxicity data. Proposal for updating guideline 208. Terrestrial plant test: 208. Seedling emergence and seedling growth test, Paris, France

  • Ofori S, Puškáčová A, Růžičková I, Wanner J (2021) Treated wastewater reuse for irrigation: Pros and cons. Sci Total Environ 760:144026

    Article  CAS  Google Scholar 

  • Phoungthong K, Shao LM, He PJ, Zhang H (2018) Phytotoxicity and groundwater impacts of leaching from thermal treatment residues in roadways. J Environ Sci 63:58–67. https://doi.org/10.1016/j.jes.2016.11.009

    Article  CAS  Google Scholar 

  • Priac A, Badot PM, Crini G (2017) Treated wastewater phytotoxicity assessment using Lactuca sativa: focus on germination and root elongation test parameters. C R Biol 340(3):188–194. https://doi.org/10.1016/j.crvi.2017.01.002

    Article  Google Scholar 

  • Rashid A. Mirza S, Keating C, Ali S, Campos LC (2021) Phytotoxicity assessment of untreated and biotreated hospital wastewater on crop plants. The virtual conference of AQUA≈360: Water for All-Emerging Issues and Innovations, 31st August 2021 –2nd September 2021, University of Exeter, United Kingdom

  • Ren Z, Yu Y, Ramesh M, Li B, Poopal RK (2022) Assessment of eco-toxic effects of commonly used water disinfectant on zebrafish (Danio rerio) swimming behaviour and recovery responses: an early-warning biomarker approach. Environ Sci Pollut Res 29(27):41849–41862. https://doi.org/10.1007/s11356-021-18333-1

    Article  CAS  Google Scholar 

  • Rueda MP, Comino F, Aranda V, Domínguez-Vidal A, Ayora-Cañada MJ (2022) Analytical pyrolysis (Py-GC-MS) for the assessment of olive mill pomace composting efficiency and the effects of compost thermal treatment. J Anal Appl Pyrol 168:105711. https://doi.org/10.1016/j.jaap.2022.105711

    Article  CAS  Google Scholar 

  • Saf C, Gondet L, Villain-Gambier M, Belaqziz TD, Ouazzani N (2023) Investigation of the agroecological applications of olive mill wastewater fractions from the ultrafiltration-nanofiltration process. J Environ Manage 333:117467. https://doi.org/10.1016/j.jenvman.2023.117467

    Article  CAS  Google Scholar 

  • Saleh TA, Mustaqeem M, Khaled M (2022) Water treatment technologies in removing heavy metal ions from wastewater: a review. Environ Nanotechnol, Monit Manag 17:100617. https://doi.org/10.1016/j.enmm.2021.100617

    Article  CAS  Google Scholar 

  • Salvatori E, Rauseo J, Patrolecco L, Barra Caracciolo A, Spataro F, Fusaro L, Manes F (2021) Germination, root elongation, and photosynthetic performance of plants exposed to sodium lauryl ether sulfate (SLES): an emerging contaminant. Environ Sci Pollut Res 28:27900–27913

    Article  CAS  Google Scholar 

  • Santos D H, Duarte J L, Tavares M G, Tavares M G, Friedrich L C, Meili L, ... & Zanta C L (2020) Electrochemical degradation and toxicity evaluation of reactive dyes mixture and real textile effluent over DSA® electrodes. Chemical Engineering and Processing-Process Intensification153, 107940.

  • Saranya P, Ramani K, Sekaran G (2014) Biocatalytic approach on the treatment of edible oil refinery wastewater. RSC Adv 4(21):10680–10692

    Article  CAS  Google Scholar 

  • Sesin V, Davy CM, Freeland JR (2021) Review of Typha spp.(cattails) as toxicity test species for the risk assessment of environmental contaminants on emergent macrophytes. Environ Pollut 284:117105. https://doi.org/10.1016/j.envpol.2021.117105

    Article  CAS  Google Scholar 

  • Shabir S, Ilyas N, Saeed M, Bibi F, Sayyed RZ, Almalki WH (2023) Treatment technologies for olive mill wastewater with impacts on plants. Environ Res 216:114399. https://doi.org/10.1016/j.envres.2022.114399

    Article  CAS  Google Scholar 

  • Shahriari T, Karbassi AR, Reyhani M (2019) Treatment of oil refinery wastewater by electrocoagulation–flocculation (Case Study: Shazand Oil Refinery of Arak). Int J Environ Sci Technol 16(8):4159–4166. https://doi.org/10.1007/s13762-018-1810-z

    Article  CAS  Google Scholar 

  • Sheth Y, Dharaskar S, Khalid M, Sonawane S (2021) An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: a review. Sustain Energy Technol Assess 43:100951

    Google Scholar 

  • Siano F, Vasca E (2020) GC-FID analysis to evaluate the possible adulteration of extra virgin olive oil with different vegetable oils. J Chem Educ 97(11):4108–4116

    Article  CAS  Google Scholar 

  • Silveira EO, Lutterbeck CA, Machado ÊL, Rodrigues LR, Rieger A, Beckenkamp F, Lobo EA (2020) Biomonitoring of urban wastewaters treated by an integrated system combining microalgae and constructed wetlands. Sci Total Environ 705:135864. https://doi.org/10.1016/j.scitotenv.2019.135864

    Article  CAS  Google Scholar 

  • Thode Filho S, de Paiva JL, Franco HA, Perez DV, da Costa MMR (2017) Environmental impacts caused by residual vegetable oil in the soil-plant system. Ciência e Natura 39(3):748–757

    Article  Google Scholar 

  • Tkachuk N, Zelena L, Fedun O (2022) Phytotoxicity of the aqueous solutions of some synthetic surfactant-containing dishwashing liquids with and without phosphates. Environ Eng Manag J 21(6):965–970

    Article  CAS  Google Scholar 

  • Vural C, Topbaş T, Dağlıoğlu ST, Dağlı Ö, Oral R, Kabay N, Özdemir G (2021) Assessment of microbial and ecotoxicological qualities of industrial wastewater treated with membrane bioreactor (MBR) process for agricultural irrigation. Water Air Soil Pollut 232(11):1–13. https://doi.org/10.1007/s11270-021-05372-0

    Article  CAS  Google Scholar 

  • Walkley A, Black CA (2003) Détermination De La Matière Organique Par Dosage Du Carbone Organique Dans Les Sols Agricoles: Méthode Walkley-black Modifiée, Centre d’expertise En Analyse Environnementale Du Québec Et Ministère De l’agriculture, des pêcheries et de l’alimentation du Québec, MA. 1010 – WB 1.0, Ministère de l'environnement du Québec, 10 p

  • Whale GF, Hjort M, Di Paolo C, Redman AD, Postma JF, Legradi J, Leonards PEG (2022) Assessment of oil refinery wastewater and effluent integrating bioassays, mechanistic modelling and bioavailability evaluation. Chemosphere 287:132146. https://doi.org/10.1016/j.chemosphere.2021.132146

    Article  CAS  Google Scholar 

  • Wyszkowski M, Ziółkowska A (2008) Effect of petrol and diesel oil on content of organic carbon and mineral components in soil. Am-Eurasian J Sustain Agric 2(1):54–60

    Google Scholar 

  • Xu J, Wei D, Wang F, Bai C, Du Y (2020) Bioassay: a useful tool for evaluating reclaimed water safety. J Environ Sci 88:165–176. https://doi.org/10.1016/j.jes.2019.08.014

    Article  CAS  Google Scholar 

  • Yacouba ZA, Mendret J, Lesage G, Zaviska F, Brosillon S (2021) Removal of organic micropollutants from domestic wastewater: the effect of ozone-based advanced oxidation process on nanofiltration. J Water Proc Eng 39:101869

    Article  Google Scholar 

  • Yadav A, Raj A, Purchase D, Ferreira LFR, Saratale GD, Bharagava RN (2019) Phytotoxicity, cytotoxicity and genotoxicity evaluation of organic and inorganic pollutants rich tannery wastewater from a Common Effluent Treatment Plant (CETP) in Unnao district, India using Vignaradiata and Allium cepa. Chemosphere 224:324–332. https://doi.org/10.1016/j.chemosphere.2019.02.124

    Article  CAS  Google Scholar 

  • Yang Y, Wang G, Li G, Ma R, Kong Y, Yuan J (2021) Selection of sensitive seeds for evaluation of compost maturity with the seed germination index. Waste Manage 136:238–243

    Article  CAS  Google Scholar 

  • Zahrim AY, Dexter ZD, Joseph CG, Hilal N (2017) Effective coagulation-flocculation treatment of highly polluted palm oil mill biogas plant wastewater using dual coagulants: Decolourisation, kinetics and phytotoxicity studies. J Water Process Eng 16:258–269. https://doi.org/10.1016/j.jwpe.2017.02.005

    Article  Google Scholar 

  • Zema DA, Lucas-Borja ME, Andiloro S, Tamburino V, Zimbone S (2019) Short-term effects of olive mill wastewater application on the hydrological and physico-chemical properties of a loamy soil. Agric Water Manag 221:312–321

    Article  Google Scholar 

  • Zhao C, Zhou J, Yan Y, Yang L, Xing G, Li H, ... & Zheng H (2021) Application of coagulation/flocculation in oily wastewater treatment: A review. Sci Total Environ 765, 142795. https://doi.org/10.1016/j.scitotenv.2020.142795

  • Zishiri RM, Mutengwa CS, Tandzi LN, Manyevere A (2022) Growth response and dry matter partitioning of quality protein maize (Zea mays L.) genotypes under aluminum toxicity. Agronomy 12(6):1262. https://doi.org/10.3390/agronomy12061262

    Article  CAS  Google Scholar 

  • Zorrig W, Cornu JY, Maisonneuve B, Rouached A, Sarrobert C, ShahzadZ BP (2019) Genetic analysis of cadmium accumulation in lettuce (Lactuca sativa). Plant Physiol Biochem 136:67–75. https://doi.org/10.1016/j.plaphy.2019.01.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge all of the staff of the Vegetable Oil Refinery located in the Mahdia province of Tunisia for providing them with wastewater and other facilities.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by GL and AEK. The first draft of the manuscript was written by GL in collaboration with AEK. IK and AG participated in the result discussion, revising the manuscript critically for important intellectual content. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Imen Khouni.

Ethics declarations

Ethical approval

Ethical approval was not required to carry out the analysis of raw and treated wastewater.

Consent to participate

Informed consent was obtained from all participants prior to their inclusion in the study.

Consent for publication

All authors consent to the publication of this work.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights.

• This investigation highlights the phytotoxicity of raw and treated oily wastewater.

• Physiological responses of lettuce seeds correlated to organic matter contents.

• CF, MF and UF treatments were evaluated for phytotoxicity removal of oily wastewater.

• Ultrafiltration was the most effective process in the oily wastewater phytotoxicity removal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louhichi, G., El Khouni, A., Ghrabi, A. et al. Phytotoxicity assessment of treated vegetable oily wastewater via environmentally coagulation/flocculation and membrane filtration technologies using lettuce (Lactuca sativa) seeds. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-023-31594-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11356-023-31594-2

Keywords

Navigation