Skip to main content
Log in

Fe/sponge structure peanut shell carbon composite preparation for efficient Fenton oxidation crystal violet

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In order to obtain super synergy effect between adsorption and Fenton oxidation for crystal violet (CV) removement from water, in this study, Fe modified on a sponge structure peanut shell carbon (Fe/SPSC) nanocomposite was successfully synthesized by a wet impregnation method. In the Fe/SPSC sample, the prepared peanut shell carbon had a sponge-like structure, (002) crystal plane of graphite crystallite, and Fe/SPSC composite coexisted Fe2O3 and Fe3O4 crystalline, which could adsorb and enrich crystal violet molecule, decrease the concentration of CV solution rapidly. And also SPSC could do better for electrons transfer and further promote CV oxidation degradation. The removal efficiency results showed that the 7% Fe/SPSC (500 °C, 2 h) had the best CV removal activity. The composite prepared under the optimum conditions is 2.0 g/L, 0.1 mL 30% H2O2, pH = 7.0, 300 mg/L crystal violet water solution, and the CV degradation rate can reach 95.5%, and the CV degradation amount for Fe/SPSC was 143.25 mg/g. It was confirmed that hydroxyl radicals (•OH) is the active center of Fenton oxidation degradation reaction. XPS results showed that Fe, O, and C elements coexist in the 7% Fe/SPSC composite, and N element content increases after the reaction. Remarkable synergies between adsorption and Fenton oxidation, which could make Fe/SPSC, have quick CV abatement ability. The possible systematic effect mechanism of adsorption and Fenton-oxidation CV was also supplied. The present system has advantages on high CV dye degradation performance, no other Fe sludge formation, short reaction time, and better catalyst reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

Download references

Funding

This study was supported by the Joint Project of Basic Agricultural Research Fund of Yunnan Province (2018FG001-051) and Open fund of Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China (2022-KF06), This work was also supported by the National Natural Science Foundation of China (31860155).

Author information

Authors and Affiliations

Authors

Contributions

Minghui Wu contributed significantly to analysis and manuscript preparation. Shuang Li contributed to make the graphs in the manuscript. Shiping Zhou helped perform the analysis with constructive discussions. Fengchuan Li performed the experiment. Tao Li performed the data analyses. Huijuan Li contributed to the conception of the study and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Huijuan Li.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ricardo A. Torres-Palma

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Li, S., Zhou, S. et al. Fe/sponge structure peanut shell carbon composite preparation for efficient Fenton oxidation crystal violet. Environ Sci Pollut Res 30, 105457–105473 (2023). https://doi.org/10.1007/s11356-023-29828-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-29828-4

Keywords

Navigation