Skip to main content
Log in

Olive mill wastewater treatment using natural adsorbents: phytotoxicity on durum wheat (Triticum turgidum L. var. durum) and white bean (Phaseolus vulgaris L.) seed germination

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This research was undertaken to optimize the phenolic compound removal from Olive Mill Wastewater (OMW) by sawdust and red clay as natural adsorbents. Fractional factorial experimental design at 25−1 was used in order to optimize the experimental conditions for high removal efficiency. Statistics ANOVA analysis, Fisher’s test, and Student’s test suggested that the adsorbent dose has the most significant influence on polyphenol removal for both adsorbents. The maximum removal of polyphenols by sawdust reached 49.6% at 60 °C by using 60 g/L of adsorbent dose, pH 2, reaction time of 24 h, and agitation speed of 80 rpm. Whereas, for red clay, 48.08% of polyphenols removal was observed under the same conditions for sawdust except the temperature of 25 °C instead of 60 °C. In addition, the thermodynamic parameters suggested spontaneous process for both adsorbents, endothermic for the sawdust and exothermic for red clay. Furthermore, the phytotoxicity effect of OMW on durum wheat (Triticum turgidum L. var. durum) and white bean (Phaseolus vulgaris L.) seed germination was investigated. The obtained results showed that the untreated OMW inhibited the seed germination of T. turgidum and P. vulgaris seeds. OMW treatment with red clay followed by dilution (95% water) resulted in 87 and 30% germination of P. vulgaris and T. turgidum, respectively. While, the treatment of OMW with sawdust and dilution at 95% resulted in 51 and 26% germination of P. vulgaris and T. turgidum, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No.

Material availability

No.

References

  • Achak M, Ouazzani N, Yaacoubi A, Mandi L (2008) Caractérisation des margines issues d’une huilerie moderne et essai de leur traitement par coagulationfloculation par la chaux et le sulfate d’aluminium. Science De L’eau 21:53–57

    Article  CAS  Google Scholar 

  • Achak M, Hafidi A, Ouazzani N, Sayadi S, Mandi L (2009) Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: kinetic and equilibrium studies. J Hazard Mater 166:117–125

    Article  CAS  Google Scholar 

  • Achak M, Hafidi A, Mandi L, Ouazzani N (2014) Removal of phenolic compounds from olive mill wastewater by adsorption onto wheat bran. J Desalin Water Treat 52:2875–2885

    Article  CAS  Google Scholar 

  • Achak M, Boumya W, Ouazzani N, Mandi L (2019) Preliminary evaluation of constructed wetlands for nutrients removal from olive mill wastewater (OMW) after passing through a sand filter. Ecol Eng 136:141–151

    Article  Google Scholar 

  • Aguiar LL, Andrade-Vieira LF, David JAO (2016) Evaluation of the toxic potential of coffee wastewater on seeds, roots and meristematic cells of Lactuca sativa L. Ecotoxicol Environ Saf 133:366–372

    Article  CAS  Google Scholar 

  • Akl MAA, Dawy MB, Serage AA (2014) Efficient removal of phenol from water samples using sugarcane bagasse based activated carbon. J Anal Bioanal Tech 5:189

    Article  Google Scholar 

  • Aliotta G, Fiorentino A, Oliva A, Temussi F (2002) Olive oil mill wastewater: isolation of polyphenols and their phytotoxicity in vitro. Allelopath J 9:9–17

    Google Scholar 

  • Al Harun MAY, Johnson J, Uddin MN, Robinson RW (2015) Identification and phytotoxicity assessment of phenolic compounds in Chrysanthemoides monilifera subsp. monilifera (Boneseed). PLoS ONE 10(10):e0139992

  • Amin NK (2009) Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics. J Hazard Mater 165:52–62

    Article  CAS  Google Scholar 

  • Anirudhan TS, Sreekumari SS, Bringle CD (2009) Removal of phenols from water and petroleum industry refnery efuents by activated carbon obtained from coconut coir pith. J Adsorption 15:439–451

    Article  CAS  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Aquilanti L, Taccari M, Bruglieri D, Osimani A, Clementi F, Comitini F, Ciani M (2014) Integrated biological approaches for olive mill wastewater treatment and agricultural exploitation. Int Biodeterior Biodegrad 88:162–168

    Article  CAS  Google Scholar 

  • Ayoub S, Al-Absi K, Al-Shdiefat S, Al-Majali D, Hijazean D (2014) Effect of olive mill wastewater land-spreading on soil properties olive tree performance and oil quality. Sci Hortic 175:160–166

    Article  Google Scholar 

  • Bailey GE, Ollis DF (1986) Biochemical engineering fundamentals. McGraw Hill, New York

  • Bakri Alaoui S, Lamy E, Achak M (2023) Assessment of the impact of diluted and pretreated olive mill wastewater on the treatment efficiency by infiltration-percolation using natural bio-adsorbents. Environ Sci Pollut Res 30:16305–16320

    Article  Google Scholar 

  • Barbera C, Maucieri C, Cavallaro V, Ioppolo A, Spagna V (2013) Effects of spreading olive mill wastewater on soil properties and crops a review. J Agric Water Manag 119:43–53

    Article  Google Scholar 

  • Benamar A, Mahjoubi FZ, Barka N, Kzaiber F, Boutoial K, Ali GAM, Oussama A (2020) Olive mill wastewater treatment using infiltration percolation in column followed by aerobic biological treatment. SN Appl Sci 2:655

  • Bingol D, Tekin N, Alkan M (2010) Brilliant Yellow dye adsorption onto sepiolite using a full factorial design. Appl Clay Sci 50:315–321. https://doi.org/10.1016/j.clay.2010.08.015

    Article  CAS  Google Scholar 

  • Box JD (1983) Investigation of the Folin-Ciocalteu phenol reagent for the determination of polyphenolic substances in natural waters. J Water Res 17:511–525

    Article  CAS  Google Scholar 

  • Buhani B, Puspitarini M, Rahmawaty R, Suharso S, Rilyanti M, Sumadi S (2018) Adsorption of phenol and methylene blue in solution by oil palm shell activated carbon prepared by chemical activation. J Oriental Chem 34:2043–205024

    Article  CAS  Google Scholar 

  • Casa R, D’Annibale A, Pieruccetti F, Stazi SR, Giovannozzi-Sermanni G, Lo Cascio B (2003) Reduction of the phenolic components in olive-mill wastewater by enzymatic treatment and its impact on durum wheat (Triticum durum Desf) germinability. Chemosphere 50:959–966

    Article  CAS  Google Scholar 

  • Cavallaro V, Maucieri C, Antonio Barbera C (2014) Lolium multiflorum Lam cvs germination under simulated olive mill wastewater salinity and pH stress. Ecol Eng 71:113–117

    Article  Google Scholar 

  • Chahid L, Yaacoubi A, Bacaoui A, Lakhal E (2015) Valorization of drinking water treatment sludge (DWTS): characterization and applications as coagulant and sorbent for Olive Mill Wastewater (OMW). J Mater Environ Sci 6:2520–2533

    CAS  Google Scholar 

  • Chouchane T, Chouchane S, Boukari A (2013) Elimination du manganèse en solution par le kaolin Etude cinétique et thermodynamique. Revue Des Energies Renouvelables 16:313–335

    Google Scholar 

  • Coleman R, Penner D (2006) Desiccant activity of short chain fatty acids. J Weed Technol 20:410–415

    Article  CAS  Google Scholar 

  • D’Annibale Casa R, Pieruccetti F, Ricci M, Marabottini R (2004) Lentinula edodes removes phenols from olive-mill wastewater: impact on durum wheat (Triticum durum Desf) germinability. Chemosphere 54:887–894

    Article  Google Scholar 

  • De Sales PF, Magriotis ZM, Rossi MALS, Resende RF (2013) Cleiton A Nunes Optimization by response surface methodology of the adsorption of coomassie blue dye on natural and acid-treated clays. J Environ Manag 130:417e428

    Article  Google Scholar 

  • Dehmani Y, Ed-Dra A, Zennouhi O, Bouymajane A, Rhazi Filali F, Laila Nassiri L, Abouarnadasse S (2020) Chemical characterization and adsorption of oil mill wastewater on Moroccan clay in order to be used in the agricultural field. J Heliyon 6:e03164

    Article  Google Scholar 

  • DellaGreca M, Monaco P, Pinto G, Pollio A, Previtera L, Temussi F (2001) Phytotoxicity of low molecular-weight phenols from olive mill waste waters. Bull Environ Contam Toxicol 67:352–359

    Article  CAS  Google Scholar 

  • Dong J, Cai L, Zhu X, Huang X, Yin T, Fang H, Ding Z (2014) Antioxidant activities and phenolic compounds of cornhusk, corncob and stigma maydis. J Braz Chem Soc 25(11):1956–1964

  • Doula MK, Papadopoulos A, Kolovos C, Lamnatou O, Zorpas AA (2020) Evaluation of the influence of olive mill waste on soils: the case study of disposal areas in Crete, Greece. Comptes Rendus Chimie 23: 705–720

  • El Herradi E, Boujaber G, Naman M, Laamyem AC, El Adlouni C, Naman F (2016) Treatment of oil mill wastewaters by infiltration-percolation on two types of filters based on soil sand and fly ash. J Mater Environ Sci 7:820–827

    Google Scholar 

  • El-Abbassi A, Kiai H, Raiti J, Hafidi A (2014) Application of ultrafiltration for olive processing wastewaters treatment. J Clean Prod 65:432–438

    Article  CAS  Google Scholar 

  • Elayadi F, El Adlouni C, Achak M, El Herradi E, El Krati M, Tahiri S, Naman M, Naman F (2019) Effects of raw and treated olive mill wastewater (OMW) by coagulation-flocculation on the germination and the growth of three plant species (wheat white beans lettuce). Mor J Chem 7:111–122

    CAS  Google Scholar 

  • Elayadi F, Achak M, Beniich N, Belaqziz M, El Adlouni C (2020) Factorial design for optimizing and modeling the removal of organic pollutants from olive mill wastewater using a novel low-cost bioadsorbent. Water Air Soil Pollut 231:351

    Article  CAS  Google Scholar 

  • Elayadi F, Boumya W, Achak M, Chhiti Y, M’hamdi Alaoui FE, Barka N, El Adlouni C (2021). Experimental and modelling studies of the removal of phenolic compounds from olive mill wastewater by adsorption on sugarcane bagasse. Environ Challenges 4:100184. https://doi.org/10.1016/j.envc.2021.100184

  • Ellis R, Roberts E (1980) Towards a rational basis for testing seed quality. In: Hebblethwaite P (ed) Seed Production, Butterworths, London, pp 605-635.

    Google Scholar 

  • Enaime G, Baçaoui A, Yaacoubi A, Belaqziz M, Wichern M, Lübken M (2020) Phytotoxicity assessment of olive mill wastewater treated by different technologies: effect on seed germination of maize and tomato. J Environ Sci Pollut Res 27:8034–8045

    Article  CAS  Google Scholar 

  • Esmail A, Abed H, Firdaous M, Chahboun N, Mennane Z, Berny E, Ouhssine M (2014) Étude physico-chimique et microbiologique des margines de trois régions du Maroc (Ouazzane Fès Boulmanet Béni Mellal). J Mater Environ Sci 5:121–126

    Google Scholar 

  • Fawzy M (2007) Biosorption of cadmium and lead by phragmites Australis L. biomass using factorial experiment design. Glob J Biotech Biochem 2:10–20

    Google Scholar 

  • Ferri F, Bertin L, Scoma A, Marchetti L, Fava F (2011) Recovery of low molecular weight phenols through solid-phase extraction. Chem Eng J 166:994–1001

    Article  CAS  Google Scholar 

  • Frascari D, Bacca AEM, Zama F, Bertin L, Fava F, Pinelli D (2015) Olive mill wastewater valorisation through phenolic compounds adsorption in a continuous flow column. J Chem Eng 283:293–303

    Article  Google Scholar 

  • Frascari D, Bacca AEM, Wardenaar T, Oertléc E, Pinellia D (2019) Continuous flow adsorption of phenolic compounds from olive mill wastewater with resin XAD16N: life cycle assessment, cost–benefit analysis and process optimization. J Chem Technol Biotechnol 94:1968–1981

    Article  CAS  Google Scholar 

  • French Association for Standardization [AFNOR] (1983) Recueil de norme française : eau, méthodes d’essai, 2nd Ed., Paris pp 621

  • Ghafari M, Cui Y, Alali A, Atkinson JD (2019) Phenol adsorption and desorption with physically and chemically tailored porous polymers: mechanistic variability associated with hyper-cross-linking and amination. J Hazard Mater 361:162–168

    Article  CAS  Google Scholar 

  • Greco G, Colarieti ML, Toscano G, Iamarino G, Rao MA, Gianfreda L (2006) Mitigation of olive mill wastewater toxicity. J Agric Food Chem 54:6776–6782

    Article  CAS  Google Scholar 

  • Hamdi M, Khadir A, Garcia JL (1991) The use of Aspergillusniger for the bioconversion of olive mill wastewaters. J Appl Microbiol Biotechnol 34:828–831

    Article  CAS  Google Scholar 

  • Hameed BH (2007) Equilibrium and kinetics studies of 246-trichlorophenol adsorption onto activated clay Colloids Surf. A Physicochem Eng Asp 307:45–52

    Article  CAS  Google Scholar 

  • Hameed BH, Ahmad AA (2009) Batch adsorption of methylene blue from aqueous solution by garlic peel an agricultural waste biomass. J Hazard Mater 164:87–875

    Article  Google Scholar 

  • Isidori M, Lavorgna M, Nardelli A, Parrella A (2005) Model study on the effect of 15 phenolic olive mill wastewater constituents on seed germination and Vibrio fischeri metabolism. J Agric Food Chem 53:8414–8417

    Article  CAS  Google Scholar 

  • Jawad AH, Abdulhameed AS (2020) Facile synthesis of crosslinked chitosan-tripolyphosphate/kaolin clay composite for decolourization and COD reduction of remazol brilliant blue Rdye: optimization by using response surface methodology. Colloids Surf A 605:125329

    Article  CAS  Google Scholar 

  • Jităreanu A, Tătărîngă G, Zbancioc AM, Stănescu U (2011) Toxicity of some cinnamic acid derivatives to common bean (phaseolus vulgaris). Not Bot Horti Agrobot 39:130–134

  • Khnifira M, Boumya W, Abdennouri M, Sadiq M, Achak M, Serdaroğlu G, Kaya S, Şimşek S, Barka N (2021) A combined molecular dynamic simulation DFT calculations andexperimental study of the eriochrome black T dye adsorption onto chitosan in aqueous solutions Inter. J Biol Macromol 166:707–721

    Article  CAS  Google Scholar 

  • Komilis DP, Karatzas E, Halvadakis CP (2005) The effect of olive mill wastewater on seed germination after various pretreatment techniques, J Environ Manage 74(4):339–348

  • Kow SH, Fahmi MR, Abidin CZ, Ong SA, Ibrahim N (2016) Regeneration of spent activated carbon from industrial application by NaOH solution and hot water. J Desalin Water Treat 57:29137–29142

    Article  CAS  Google Scholar 

  • Lanciotti R, Gianotti A, Baldi D, Angrisani R, Suzzi G, Mastrocola D, Guerzoni M (2005) Use of yarrowia lipolytica strains for the treatment of olive mill wastewater. J Bioresour Technol 96:317–322

    Article  CAS  Google Scholar 

  • Laszl K, Tombacz E, Novak C (2007) pH-dependent adsorption and desorption of phenol and aniline on basic activated carbon. Colloids and Surfaces a: Physicochem Eng Aspects 306:95–101

    Article  Google Scholar 

  • Leili M, Faradmal J, Kosravian F, Heydari M (2015) A comparison study on the removal of phenol from aqueous solution using organomodified bentonite and commercial activated carbon. J Avicenna Environ Health Eng 2:2698–2698

    Article  Google Scholar 

  • Lingjun K, Minhua S, Yan P, Li’an H, Juan L, Haipeng L, Zenghui D, Kaimin S, Ya X, Diyun C (2017) Producing sawdust derived activated carbon by co-calcinations with limestone for enhanced Acid Orange II adsorption. J Clean Prod 168:22–29

    Article  Google Scholar 

  • Lorenc-Grabowska E (2016) Effect of micropore size distribution on phenol adsorption on steam activated carbons. Adsorption 22:599–607

    Article  CAS  Google Scholar 

  • Lu X, Yi-xu H, Bo-han Z (2014) Kinetics and equilibrium adsorption of copper(II) and nickel(II) ions from aqueous solution using sawdust xanthate modified with ethanediamine Trans. Nonferrous Met Soc China 24:868–875

    Article  Google Scholar 

  • Mall ID, Srivastva VC, Agarwal NK, Mishra IM (2005) Removal of Congo red from aqueous solution by baggase fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere 61:492–501

    Article  CAS  Google Scholar 

  • Mandal A, Das SK (2019) Phenol adsorption from wastewater using clarified sludge from basic oxygen furnace. J Environ Chem Eng 7:103–259

    Article  Google Scholar 

  • Mojoudi N, Mirghafari N, Soleimani M, Shariatmadari H, Belver C, Bedia J (2019) Phenol adsorption on high microporous activated carbons prepared from oily sludge: equilibrium kinetic and thermodynamic studies. Sci Rep 9:19352

    Article  CAS  Google Scholar 

  • Mondal NK, Roy S (2015) Optimization study of adsorption parameters for removal of phenol on gastropod shell dust using response surface Methodology. J Clean Techn Environ Policy 18:429–447

    Article  Google Scholar 

  • Murillo-Amador B, Lopez-Aguilar R, Kaya C, Larrinaga-Mayoral J, Flores-Hernandez A (2002) Comparative effects of nacl and polyethylene glycol on germination emergence and seedling growth of cowpea. J Agron Crop Sci 188:235–247

    Article  CAS  Google Scholar 

  • Muscolo A, Sidari M, Mallamaci C, Attinà E (2010) Effects of olive mill wastewater on seed germination and seedling growth. Terrestrial and Aquatic Environmental Toxicology 4:75–83.

  • Namasivayam C, Yamuna RT (1992) Removal of Congo red from aqueous solutions by biogas waste slurry. J Chem Technol Biotechnol 53:153–157. https://doi.org/10.1002/jctb.280530208

    Article  CAS  Google Scholar 

  • Nistor MA, Halip L, Muntean SG, Kurunczi L, Costișor O (2022) Modeling and optimization of Acid Orange 7 adsorption process using magnetite/carbon nanocomposite. Sustain Chem Pharm 29:100778

    Article  CAS  Google Scholar 

  • Okçu G, Kaya M, Atak M (2005) Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L). Turk J Agric For 29:237–242

    Google Scholar 

  • Ouaddari H, Beqqour D, Bennazha J, El Amrani IE, Albizane A, Solhy A, Varma RS (2018) Natural Moroccan clays: comparative study of their application as recyclable catalysts in Knoevenagel condensation. Sustain Chem Pharm 10:1–8

    Article  Google Scholar 

  • Ozkaya B (2006) Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J Hazard Mater 129:158–163

    Article  Google Scholar 

  • Palanikumar K, Davim JP (2009) Assessment of some factors influencing tool wear on the machining of glass fibre-reinforced plastics by coated cemented carbide tools. J Mater Process Technol 209:511–519. https://doi.org/10.1016/j.jmatprotec.2008.02.020

    Article  CAS  Google Scholar 

  • Papaoikonomou L, Labanaris K, Kaderides K, Goula AM (2021) Adsorption–desorption of phenolic compounds from olive mill wastewater using a novel low-cost biosorbent. Environ Sci Pollut Res 28:24230–24244.

  • Pinho IA, Lopes DV, Martins RC, Quina MJ (2017) Phytotoxicity assessment of olive mill solid wastes and the influence of phenolic compounds. Chemosphere 185:258–267

    Article  CAS  Google Scholar 

  • Pourmortazavi SM, Sahebi H, Zandavar H, Mirsadeghi S (2019) Fabrication of Fe3O4 nanoparticles coated by extracted shrimp peels chitosan as sustainable adsorbents for removal of chromium contaminates from wastewater: the design of experiment Compos B. J Eng 107130. https://doi.org/10.1016/jcompositesb2019107130

  • Rguiti MM, Baddouh A, Elmouaden K, Bazzi LH, Hilali M, Bazzi L (2018) Electrochemical oxidation of olive mill waste waters on tin oxide electrode. JMES 9:551–558

    CAS  Google Scholar 

  • Rusan MJM, Albalasmeh AA, Zuraiqi S, Bashabsheh M (2015) Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L). Environ Sci Pollut Res Int 22:9127–9135

    Article  CAS  Google Scholar 

  • Saadat S, Karimi-Jashni A (2011) Optimization of Pb(II) adsorption onto modified walnut shells using factorial design and simplex methodologies. Chem Eng J 173:743–749

    Article  CAS  Google Scholar 

  • Salari M, Hadi Dehghani M, Azari A, Darvish Motevalli M, Shabanloo A, Ali High I (2019) Performance removal of phenol from aqueous solution by magnetic chitosan based on response surface methodology and genetic algorithm. J Mol Liq 285:146–157

    Article  CAS  Google Scholar 

  • Saleh TA, Adio SO, Asif M, Dafalla H (2018) Statistical analysis of phenols adsorption on diethylenetriamine-modified activated carbon, J Clean Prod 182:960–968

    Article  CAS  Google Scholar 

  • Sekar M, Sakthi V, Rengaraj SJ (2004) Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell. J Colloid Interface Sci 279:307–313

  • Shahawy AE, Ahmed IA, Nasr M, Ragab AH, Al-Mhyawi SR, Elamin KMA (2021) Organic pollutants removal from olive mill wastewater using electrocoagulation process via Central Composite Design (CCD). Water 13(24):3522

  • Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM (2006) Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloids Surf A Physicochem Eng Asp 272:89–104

  • Stasinakis AS, Petalas IEVA, Halvadakis CP (2008) Removal of total phenols from olive-mill wastewater using an agricultural by-product olive pomace. J Hazard Mater 160:408–413

  • Vavouraki AI, Dareioti MA, Kornaros M (2021) Olive Mill Wastewater (OMW) polyphenols adsorption onto polymeric resins: part i—batch anaerobic digestion of OMW. Waste Biomass Valor 12;2271–2281

  • Ververi M, Goula AM (2019) Pomegranate peel and orange juice by-product as new biosorbents of phenolic compounds from olive mill wastewaters. J Chem Eng Process: Process Intensification 138:86–96

    Article  CAS  Google Scholar 

  • Xie B, Qin J, Wang S, Li X, Sun H, Chen W (2020) Adsorption of phenol on commercial activated carbons: modelling and interpretation. Int J Environ Res Public Health 17(3):789

  • Yangui A, Abderrabba M (2018) Towards a high yield recovery of polyphenols from olive mill wastewater on activated carbon coated with milk proteins: experimental design and antioxidant activity. J Food Chem 262:102–109

    Article  CAS  Google Scholar 

  • Zagklis DP, Aikaterini I, Vavouraki Michael E, Kornaros Christakis A, Paraskeva, (2015) Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption. J Hazard Mater 285:69–76

    Article  CAS  Google Scholar 

  • Zohaib A, Ehsanullah Tabassum T, Abbas T, Rasool T (2014) Influence of water soluble phenolics of Vicia sativa L On germination and seedling growth of pulse crops. J Scientia Agriculturae 8:148–151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors participated to the study’s conception and design. Material preparation, data collection, and analysis were performed by Fatima Elayadi and Mounia Achak. Formal analysis and investigation: Fatima Elayadi, Mounia Achak, Wafaa Boumya, Chakib El Adlouni, Nourredine Barka, and Edvina Lamy. The first draft of the manuscript was written by Fatima Elayadi, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mounia Achak.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Elena Maestri

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elayadi, F., Achak, M., Boumya, W. et al. Olive mill wastewater treatment using natural adsorbents: phytotoxicity on durum wheat (Triticum turgidum L. var. durum) and white bean (Phaseolus vulgaris L.) seed germination. Environ Sci Pollut Res 30, 109481–109499 (2023). https://doi.org/10.1007/s11356-023-29741-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-29741-w

Keywords

Navigation