Skip to main content

Advertisement

Log in

Green extraction of Quercus infectoria gall with supercritical CO2 and methanol co-solvent

  • Sustainable Energy for Better Social, Environmental and Economic Returns
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Green extraction of supercritical liquid CO2 (SCFE-CO2) using co-solvent methanol can produce a more complete phenolic acid composition and a higher quantity when compared to those without using co-solvent. The extract was devoid of toxicity. SCFE-CO2 is carried out by putting 100 g of Quercus infectoria gall of size 0.3 mm into extraction tube at temperature of 60 °C and the pressure of 20 MPa with a CO2 flow rate of 25 ml/min using co-solvent methanol with variation of flow speed 0.05, 0.5, 1.5, 3, and 6 for 60 min. The extract is analyzed using LC–MS/MS, the total phenolic content is determined using the Folin-Ceocateu method, and the toxicity value is determined using the Vero cell. According to the results, the green method of extracting SCFE-CO2 with methanol co-solvent can produce a peak and identify about 27 phenolic compounds, and increasing the rate of flow of methane co-solvent will greatly affect the outcome of the extraction to a flow rate of 0.5 ml/min, while adding a co-solvent with a flow speed above 0.5 does not affect the result. Repeated extraction of some of the largest phenolic peaks provide phenol content with minimal extract variability (div. sd. 0.1%), and the addition of soluble methanol will also increase the TPC concentration but does not increase the IC50 toxicity value above 1000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ab. Rahman, N. S., Md. Salleh L., Abd. Majid F. A. and Harisun, Y. Harisun, Y. (2015) Quantification of Gallic Acid and Tannic Acid from Quercus infectoria (Manjakani) and their Effects on Antioxidant and Antibacterial Activities. Pertanika Journal of Science & Technology 23(2):351–362

    Google Scholar 

  • Al-Maqtari QA, Al-Ansi W, Mahdi AA, Al-Gheethi AAS, Mushtaq BS, Al-Adeeb A, Wei M, Yao W (2021) Supercritical fluid extraction of four aromatic herbs and assessment of the volatile compositions, bioactive compounds, antibacterial, and anti-biofilm activity. Environ Sci Pollut Res 28:25479–25492

    Article  CAS  Google Scholar 

  • Amr AS, Ahmad MN, Zahra JA, Abdullah MA (2021) HPLC/MS-MS identification of oak Quercus aegilops root tannins. J Chem 2021:1–10. https://doi.org/10.1155/2021/8882050

    Article  CAS  Google Scholar 

  • Aras A, Bursal E, Dogru M (2016) UHPLC-ESI-MS/MS analyses for quantification of phenolic compounds of Nepeta nuda subsp. Lydiae. J Appl Pharmaceutical Sci 6(11):009–013

    Article  CAS  Google Scholar 

  • Askari F, Azadi A, Namavar-Jahromi B, Tansaz M, Mirzapour Nasiri A, Mohagheghzadeh A, Badr* P (2020) A comprehensive review about Quercus infectoria G Olivier gall. Res Jf Pharmacognosy 7(1):69–77. https://doi.org/10.22127/rjp.2019.184177.1494

  • Baharuddin NS, Abdullah H, Abdul Wahab WNAW (2015) Anti-Candida activity of Quercus infectoria gall extracts against Candida species. J Pharm Bioallied Sci 7(1):15. https://doi.org/10.4103/0975-7406.148742

    Article  Google Scholar 

  • Bouhafsoun A, Yilmaz MA, Boukeloua A, Temel H, Harche MK (2018) Simultaneous quantification of phenolic acids and flavonoids in Chamaerops humilis L. using LC–ESI-MS/MS. Food Sci Technol 38:242–247. https://doi.org/10.1590/fst.19917

    Article  Google Scholar 

  • Dash GK, Md. Ansari T, Sami F and Majeed S: Proximate Analysis and Quantitative Estimation of Gallic Acid in Quercus infectoria Oliv. Galls by HPTLC. Int J Pharm Sci Res 2016;7(11):4400–06

  • Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, Ju Y-H (2014) Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal 22(3):296–302. https://doi.org/10.1016/j.jfda.2013.11.001

    Article  CAS  Google Scholar 

  • Dos Santos C, Galaverna RS, Angolini CFF, Nunes VVA, De Almeida LFR, Ruiz ALTG, De Carvalho JE, Duarte RMT, Duarte MCT, Eberlin MN (2018) Antioxidative, antiproliferative and antimicrobial activities of phenolic compounds from three myrcia species. Molecules 23(5):5. https://doi.org/10.3390/molecules23050986

    Article  CAS  Google Scholar 

  • Hadzri HM, Yunus MAC, Zhari S, Rithwan F (2014) The effects of solvents and extraction methods on the antioxidant activity of P. niruri. Jurnal Teknologi 68(5):5. https://doi.org/10.11113/jt.v68.3030

    Article  Google Scholar 

  • Hamad HO, Alma MH, Gulcin İ, Yılmaz MA, Karaoğul E (2017) Evaluation of Phenolic Contents and Bioactivity of Root and Nutgall Extracts from Iraqian Quercus infectoria Olivier. Nat. Prod Rec 11(2):205–210

    CAS  Google Scholar 

  • Hartanto D, Saputro O, Utomo WP, Rosyidah A, Sugiarso D, Ersam T, Nur H, Prasetyoko D (2016a) Synthesis of ZSM-5 directly from kaolin without organic template: Part-1: Effect of crystallization time. Asian J Chem 28(1):211

    Article  CAS  Google Scholar 

  • Hartanto D, Sin Yuan L, Mutia Sari S, Sugiarso D, Kris Murwarni I, Ersam T, Prasetyoko D, Nur H (2016b) The use of the combination of ftir, pyridine adsorption, 27al and 29si mas nmr to determine the bronsted and lewis acidic sites. jurnal teknologi 78(6). https://doi.org/10.11113/Jt.V78.8821

  • Haşimi N, Ertaş A, Yılmaz MA, Boğa M, Temel H, Demirci S, Özden TY, Yener İ, Kolak U (2017) LC-MS/MS and GC-MS analyses of three endemic Astragalus species from Anatolia towards their total phenolic-flavonoid contents and biological activities. Biol Divers Conserv 10:18–30

    Google Scholar 

  • Hassim N, Markom M, Anuar N, Dewi KH, Baharum SN, Mohd Noor N (2015) Antioxidant and antibacterial assays on polygonum minus extracts: Different extraction methods. International Journal of Chemical Engineering 2015(826709):10. https://doi.org/10.1155/2015/826709

    Article  CAS  Google Scholar 

  • IyliaArina MZ, Harisun Y (2019) Effect of extraction temperatures on tannin content and antioxidant activity of Quercus infectoria (Manjakani). Biocatal Agric Biotechnol 19:101104. https://doi.org/10.1016/j.bcab.2019.101104

    Article  Google Scholar 

  • Jamal JA, Ghafar ZA, Husain K (2011) Medicinal plants used for postnatal care in Malay traditional medicine in the Peninsular Malaysia. Pharmacogn J 3(24):15–24

    Article  Google Scholar 

  • Kamarudin N, Muhamad N, Salleh N, Tan S (2021) Impact of solvent selection on phytochemical content, recovery of tannin and antioxidant activity of Quercus infectoria galls. Pharmacogn J 13(5):1195–1204. https://doi.org/10.5530/pj.2021.13.153

    Article  CAS  Google Scholar 

  • Kaur R, Mandal K, Sahoo SK, Kumar R, Arora R, Singh B (2016) Estimation and risk assessment of flubendiamide on fodder berseem clover (Trifolium alexandrinum L.) by QuEChERS methodology and LC-MS/MS. Environ Sci Pollut Res 23:9791–9798

    Article  CAS  Google Scholar 

  • Khemakhem I, Ahmad-Qasem MH, Catalán EB, Micol V, García-Pérez JV, Ayadi MA, Bouaziz M (2017) Kinetic improvement of olive leaves’ bioactive compounds extraction by using power ultrasound in a wide temperature range. Ultrason Sonochem 34:466–473

    Article  CAS  Google Scholar 

  • Khoddami A, Wilkes MA, Roberts TH (2013) Techniques for analysis of plant phenolic compounds. Molecules 18(2):2. https://doi.org/10.3390/molecules18022328

    Article  CAS  Google Scholar 

  • Leung H, Ballantyne B (1999) Developmental toxicity evaluation of rats dosed orally or cutaneously with octoxynol-9. J Appl Toxicol 19:267–273

    Article  CAS  Google Scholar 

  • Manna L, Bugnone CA, Banchero M (2015) Valorization of hazelnut, coffee and grape wastes through supercritical fluid extraction of triglycerides and polyphenols. J Supercrit Fluids 104:204–211. https://doi.org/10.1016/j.supflu.2015.06.012

    Article  CAS  Google Scholar 

  • Markom M, Hassim N, Anuar N, Baharum SN (2013) Co-solvent selection for supercritical fluid extraction of essential oil and bioactive compounds from Polygonum minus. ASEAN J Chem Eng 12(2):2. https://doi.org/10.22146/ajche.49739

    Article  Google Scholar 

  • Mota FL, Queimada AJ, Pinho SP, Macedo EA (2008) Aqueous solubility of some natural phenolic compounds. Ind Eng Chem Res 47(15):5182–5189. https://doi.org/10.1021/ie071452o

    Article  CAS  Google Scholar 

  • Nadia J, Shahbaz K, Ismail M, Farid MM (2018) Approach for polygodial extraction from Pseudowintera colorata (Horopito) leaves using deep eutectic solvents. ACS Sustain Chem Eng 6(1):862–871. https://doi.org/10.1021/acssuschemeng.7b03221

    Article  CAS  Google Scholar 

  • Nguta JM, Mbaria JM (2013) Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya. J Ethnopharmacol 148(2013):988–992

    Article  CAS  Google Scholar 

  • Nurul-Ajilah MK, Hasmah A, Wan Ezumi MF (2019) Evaluation of developmental toxicity and teratogenicity of Quercus infectoria galls (Manjakani) aqueous extract in Sprague Dawley rats. Asian J. Pharmacogn 3(3):36–42

    Google Scholar 

  • Parwata I (2016) Diktat obat tradisional. Universitas Udayana, Bali

    Google Scholar 

  • Qi X-J, Pang X, Cao J-Q, Du S-S (2020) Comparative analysis on bioactivity against three stored insects of Ligusticum pteridophyllum Franch. rhizomes essential oil and supercritical fluid (SFE-CO2) extract. Environ Sci Pollut Res 27(13):15584–15591. https://doi.org/10.1007/s11356-020-08043-5

    Article  CAS  Google Scholar 

  • Radzali SA, Baharin BS, Othman R, Markom M, Rahman RA (2014) Co-solvent selection for supercritical fluid extraction of astaxanthin and other carotenoids from Penaeus monodon waste. J Oleo Sci 63(8):769–777. https://doi.org/10.5650/jos.ess13184

    Article  CAS  Google Scholar 

  • Shi L, Zhao W, Yang Z, Subbiah V, Suleria HAR (2022) Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environ Sci Pollut Res 29(54):81112–81129. https://doi.org/10.1007/s11356-022-23337-6

    Article  CAS  Google Scholar 

  • Singh A, Bajpai V, Kumar S, Sharma KR, Kumar B (2016) Profiling of gallic and ellagic acid derivatives in different plant parts of Terminalia arjuna by HPLC-ESI-QTOF-MS/MS. Nat Prod Commun 11(2):1934578X1601100227

    CAS  Google Scholar 

  • Slimen IB, Mabrouk M, Hanène C, Najar T, Abderrabba M (2017) LC-MS analysis of phenolic acids, flavonoids and betanin from spineless Opuntia ficus-indica fruits. Cell Biol 5(2):2. https://doi.org/10.11648/j.cb.20170502.12

    Article  CAS  Google Scholar 

  • Sukor NF, Jusoh R, Kamarudin NS, Abdul Halim NA, Sulaiman AZ, Abdullah SB (2020) Synergistic effect of probe sonication and ionic liquid for extraction of phenolic acids from oak galls. Ultrason Sonochem 62:104876. https://doi.org/10.1016/j.ultsonch.2019.104876

    Article  CAS  Google Scholar 

  • Sun Z, Zhao L, Zuo L, Qi C, Zhao P, Hou X (2014) A UHPLC–MS/MS method for simultaneous determination of six flavonoids, gallic acid and 5, 8-dihydroxy-1, 4-naphthoquinone in rat plasma and its application to a pharmacokinetic study of Cortex Juglandis Mandshuricae extract. J Chromatogr B 958:55–62

    Article  CAS  Google Scholar 

  • Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17(6):300–312. https://doi.org/10.1016/j.tifs.2005.12.004

    Article  CAS  Google Scholar 

  • Wyrepkowski CC, Gomes da Costa DLM, Sinhorin AP, Vilegas W, De Grandis RA, Resende FA, Varanda EA, Dos Santos LC (2014) Characterization and quantification of the compounds of the ethanolic extract from Caesalpinia ferrea stem bark and evaluation of their mutagenic activity. Molecules 19(10):16039–16057

    Article  Google Scholar 

  • Yudhisi P.R., Saputera D., Widodo (2019) Toxicity Test Of Garlic Extract On Vero Cells In Vitro, Dentino 4(2):135–139

  • Yulianti CH, Ediati R, Hartanto D, Purbaningtias TE, Chisaki Y, Jalil AA, Che Ku Hitam CKNL, Prasetyoko D (2014) Synthesis of CaOZnO nanoparticles catalyst and its application in transesterification of refined palm oil. Bull Chem React Eng Catalysis 9(2):100–110. https://doi.org/10.9767/bcrec.9.2.5998.100-110

    Article  CAS  Google Scholar 

  • Zi SC, Chandren S, Yuan LS, Razali R, Ho CS, Hartanto D, Mahlia TMI, Nur H (2016) New method to synthesize mesoporous titania by photodegradation of surfactant template. Solid State Sci 52:83–91

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Dr. Djoko Hartanto for his excellent assistance in the Laboratory of Material and Energy, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.

Funding

The research was supported by the Indonesian Ministry of Research, Technology and Higher Education (RISTEK DIKTI) under the Doctor Dissertation support program (Grant Number: 085/E5/PG.02.00.PT/2022 and 884/UN3.15/PT/2022).

Author information

Authors and Affiliations

Authors

Contributions

Prof. Dr. Achmad Syahrani conceived the ideas and designed the experiments. Retno Purbowati conducted the experiments, analyzed the data, and wrote the manuscript. Prof. Dr. Titik Taufikurohmah revisited the manuscript.

Corresponding author

Correspondence to Achmad Syahrani.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to publish

The authors approve the manuscript and give their consent for submission and publication.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 93 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purbowati, R., Taufikurohmah, T. & Syahrani, A. Green extraction of Quercus infectoria gall with supercritical CO2 and methanol co-solvent. Environ Sci Pollut Res 30, 116952–116959 (2023). https://doi.org/10.1007/s11356-023-28047-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-28047-1

Keywords

Navigation