Skip to main content

Advertisement

Log in

Mapping the field of microalgae CO2 sequestration: a bibliometric analysis

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microalgae CO2 sequestration has gained considerable attention in the last three decades as a promising technology to slow global warming caused by CO2 emissions. To provide a comprehensive and objective analysis of the research status, hot spots, and frontiers of CO2 fixation by microalgae, a bibliometric approach was recently chosen for review. In this study, 1561 articles (1991–2022) from the Web of Science (WOS) on microalgae CO2 sequestration were screened. A knowledge map of the domain was presented using VOSviewer and CiteSpace. It visually demonstrates the most productive journals (Bioresource Technology), countries (China and USA), funding sources, and top contributors (Cheng J, Chang JS, and their team) in the field of CO2 sequestration by microalgae. The analysis also revealed that research hotspots changed over time and that recent research has focused heavily on improving carbon sequestration efficiency. Finally, commercialization of carbon fixation by microalgae is a key hurdle, and supports from other disciplines could improve carbon sequestration efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abu-Ghosh S, Dubinsky Z, Verdelho V, Iluz D (2021) Unconventional high-value products from microalgae: a review. Bioresour Technol 329:124895

    Article  CAS  Google Scholar 

  • Amoroso G, Sültemeyer D, Thyssen C, Fock HP (1998) Uptake of HCO3 and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta1. Plant Physiol 116:193–201

    Article  CAS  Google Scholar 

  • Anuar A, Marwan NF, Smith J, Siriyanun S, Sharif A (2022) Bibliometric analysis of immigration and environmental degradation: evidence from past decades. Environ Sci Pollut Res 29:13729–13741

    Article  Google Scholar 

  • Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998) The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot 76(6):1052–1071

    CAS  Google Scholar 

  • Bretas VPG, Alon I (2021) Franchising research on emerging markets: bibliometric and content analyses. J Bus Res 133:51–65

    Article  Google Scholar 

  • Cheah WY, Show PL, Chang JS, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol 184:190–201

    Article  CAS  Google Scholar 

  • Cheng J, Huang Y, Feng J, Sun J, Zhou J, Cen K (2013) Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2. Bioresour Technol 136:496–501

    Article  CAS  Google Scholar 

  • Cheng J, Lu H, He X, Yang W, Zhou J, Cen K (2017) Mutation of Spirulina sp. by nuclear irradiation to improve growth rate under 15% carbon dioxide in flue gas. Bioresour Technol 238:650–656

    Article  CAS  Google Scholar 

  • Cheng J, Song Y, Miao Y, Guo W, Wang Y, Li X, Yang W, Zhou J (2020) Three-stage shear-serrated aerator broke CO2 bubbles to promote mass transfer and microalgal growth. ACS Sustain Chem Eng 8:939–947

    Article  CAS  Google Scholar 

  • Cheng J, Xu J, Ye Q, Lai X, Zhang X, Zhou J (2019) Strengthening mass transfer of carbon dioxide microbubbles dissolver in a horizontal tubular photo-bioreactor for improving microalgae growth. Bioresour Technol 277:11–17

    Article  CAS  Google Scholar 

  • Cheng J, Yang Z, Huang Y, Huang L, Hu L, Xu D, Zhou J, Cen K (2015) Improving growth rate of microalgae in a 1191 m2 raceway pond to fix CO2 from flue gas in a coal-fired power plant. Bioresour Technol 190:235–241

    Article  CAS  Google Scholar 

  • Chia SR, Chew KW, Leong HY, Ho SH, Munawaroh HSH, Show PL (2021) CO2 mitigation and phycoremediation of industrial flue gas and wastewater via microalgae-bacteria consortium: possibilities and challenges. Chem Eng J 425:131436

    Article  CAS  Google Scholar 

  • Costa JAV, de Freitas BCB, Lisboa CR, Santos TD, de Fraga Brusch LR, de Morais MG (2019) Microalgal biorefinery from CO2 and the effects under the Blue Economy. Renew Sust Energ Rev 99:58–65

    Article  Google Scholar 

  • da Silva Vaz B, da Silveira Mastrantonio DJ, Costa JAV, de Morais MG (2019) Green alga cultivation with nanofibers as physical adsorbents of carbon dioxide: evaluation of gas biofixation and macromolecule production. Bioresour Technol 287:121406

    Article  Google Scholar 

  • Deveau JST, Khosravani H, Lew RR, Colman B (1998) CO2 uptake mechanism in Eremosphaera viridis. Can J Bot 76:1161–1164

    CAS  Google Scholar 

  • Elhambakhsh A, Keshavarz P (2021) Enhanced CO2 capture efficiency applying amine-based nano magnetite/sulfinol-M nano solvents at high pressures. Environ Sci Pollut Res 28:3455–3464

    Article  CAS  Google Scholar 

  • Fu J, Huang Y, Liao Q, Xia A, Fu Q, Zhu X (2019) Photo-bioreactor design for microalgae: a review from the aspect of CO2 transfer and conversion. Bioresour Technol 292:121947

    Article  CAS  Google Scholar 

  • Ho SH, Chen YD, Chang CY, Lai YY, Chen CY, Kondo A, Ren N, Chang JS (2017) Feasibility of CO2 mitigation and carbohydrate production by microalga Scenedesmus obliquus CNW-N used for bioethanol fermentation under outdoor conditions: effects of seasonal changes. Biotechnol Biofuels 10:1–13

    Article  Google Scholar 

  • Ho S-H, Kondo A, Hasunuma T, Chang J-S (2013) Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation. Bioresour Technol 143:163–171

    Article  CAS  Google Scholar 

  • Hussain F, Shah SZ, Ahmad H, Abubshait SA, Abubshait HA, Laref A, Manikandan HA, Kusuma HS, Iqbal M (2021) Microalgae an ecofriendly and sustainable wastewater treatment option: biomass application in biofuel and bio-fertilizer production. A review. Renew Sust Energ Rev 137:110603

    Article  CAS  Google Scholar 

  • Iwasaki K, Evenhuis C, Tamburic B, Kuzhiumparambil U, O'Connor W, Ralph P, Szabó M (2021) Improving light and CO2 availability to enhance the growth rate of the diatom. Chaetoceros muelleri. Algal Res 55:102234

    Article  Google Scholar 

  • Jaubert M, Bouly J-P, Ribera d’Alcalà M, Falciatore A (2017) Light sensing and responses in marine microalgae. Curr Opin Plant Biol 37:70–77

    Article  CAS  Google Scholar 

  • Jiang K, Ashworth P (2021) The development of Carbon Capture Utilization and Storage (CCUS) research in China: a bibliometric perspective. Renew Sust Energ Rev 138:110521

    Article  CAS  Google Scholar 

  • Kao CY, Chiu SY, Huang TT, Dai L, Wang GH, Tseng CP, Chen CH, Lin CS (2012) A mutant strain of microalga Chlorella sp. for the carbon dioxide capture from biogas. Biomass Bioenergy 36:132–140

    Article  CAS  Google Scholar 

  • Kong W, Shen B, Lyu H, Kong J, Ma J, Wang Z, Feng S (2021) Review on carbon dioxide fixation coupled with nutrients removal from wastewater by microalgae. J Clean Prod 292:125975

    Article  CAS  Google Scholar 

  • Lin WR, Lai YC, Sung PK, Tan SI, Chang CH, Chen CY, Shu CJ, Ng IS (2018) Enhancing carbon capture and lipid accumulation by genetic carbonic anhydrase in microalgae. J Taiwan Inst Chem Eng 93:131–141

    Article  CAS  Google Scholar 

  • Li S, Li X, Ho S-H (2022) How to enhance carbon capture by evolution of microalgal photosynthesis? Sep Purif Technol 291:120951

    Article  CAS  Google Scholar 

  • Liu S, Zhao Y, Liu L, Ao X, Ma L, Wu M, Ma F (2015) Improving cell growth and lipid accumulation in green microalgae Chlorella sp. via UV irradiation. Appl Biochem Biotechnol 175:3507–3518

    Article  CAS  Google Scholar 

  • Maghzian A, Aslani A, Zahedi R (2022) Review on the direct air CO2 capture by microalgae: bibliographic mapping. Energy Reports 8:3337–3349

    Article  Google Scholar 

  • Mata TM, Martins AA, NidiaS C (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Murakami M, Ikenouchi M (1997) The biological CO2 fixation and utilization project by rite (2) — screening and breeding of microalgae with high capability in fixing CO2—. Energy Convers Manag 38:S493–S497

    Article  CAS  Google Scholar 

  • Pavlik D, Zhong Y, Daiek C, Liao W, Morgan R, Clary W, Liu Y (2017) Microalgae cultivation for carbon dioxide sequestration and protein production using a high-efficiency photobioreactor system. Algal Res 25:413–420

    Article  Google Scholar 

  • Qin Y, Xu Z, Wang X, Škare M (2022) Green energy adoption and its determinants: a bibliometric analysis. Renew Sust Energ Rev 153:111780

    Article  Google Scholar 

  • Saxena S (2015) Strategies of strain improvement of industrial microbes. In: Saxena S (ed) Applied Microbiology. Springer India, New Delhi, pp 155–171

    Chapter  Google Scholar 

  • Serrano-Bueno G, Romero-Campero FJ, Lucas-Reina E, Romero JM, Valverde F (2017) Evolution of photoperiod sensing in plants and algae. Curr Opin Plant Biol 37:10–17

    Article  CAS  Google Scholar 

  • Song C, Han X, Yin Q, Chen D, Li H, Li S (2021a) Performance intensification of CO2 absorption and microalgae conversion (CAMC) hybrid system via low temperature plasma (LTP) treatment. Sci Total Environ 801:149791

    Article  CAS  Google Scholar 

  • Song C, Liu Q, Qi Y, Chen G, Song Y, Kansha Y, Kitamura Y (2019) Absorption-microalgae hybrid CO2 capture and biotransformation strategy-a review. Int. J. Greenh. Gas Control 88:109–117

    Article  CAS  Google Scholar 

  • Song Y, Cheng J, Lai X, Guo W, Yang W (2021b) Developing a three-dimensional tangential swirl plate photobioreactor to enhance mass transfer and flashlight effect for microalgal CO2 fixation. Chem Eng Sci 244:116837

    Article  CAS  Google Scholar 

  • Sültemeyer D (1998) Carbonic anhydrase in eukaryotic algae: characterization, regulation, and possible function during photosynthesis. Can J Bot 76:962–972

    Google Scholar 

  • Sung KD, Lee JS, Shin CS, Park SC, Choi MJ (1999) CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresour Technol 68:269–273

    Article  CAS  Google Scholar 

  • Sung YJ, Sim SJ (2022) Multifaceted strategies for economic production of microalgae Haematococcus pluvialis-derived astaxanthin via direct conversion of CO2. Bioresour Technol 344:126255

    Article  CAS  Google Scholar 

  • Su Y (2021) Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Sci Total Environ 762:144590

    Article  CAS  Google Scholar 

  • Tan HT, Yusoff FM, Khaw YS, Ahmad SA, Shaharuddin NA (2021) Uncovering research trends of phycobiliproteins using bibliometric approach. Plants 10(11):2358

    Article  CAS  Google Scholar 

  • Varaprasad D, Raghavendra P, Sudha NR, Sarma LS, Parveen SN, Chandana PS, Chandra MS, Chandrasekhar T (2021) Bioethanol production from green alga Chlorococcum minutum through reduced graphene oxide-supported platinum-ruthenium (Pt-Ru/RGO) nanoparticles. Bioenergy Res 15:280–288

    Article  Google Scholar 

  • Vargas-Estrada L, Torres-Arellano S, Longoria A, Arias DM, Okoye PU, Sebastian PJ (2020) Role of nanoparticles on microalgal cultivation: a review. Fuel 280:118598

    Article  CAS  Google Scholar 

  • Wang D, Huangfu Y, Dong Z, Dong Y (2022) Research hotspots and evolution trends of carbon neutrality— visual analysis of bibliometrics based on CiteSpace. Sustainability 14(3):1078

    Article  Google Scholar 

  • Wong SL, Nyakuma BB, Nordin AH, Lee CT, Ngadi N, Wong KY, Oladokun O (2021) Uncovering the dynamics in global carbon dioxide utilization research: a bibliometric analysis (1995–2019). Environ Sci Pollut Res 28:13842–13860

    Article  CAS  Google Scholar 

  • Xie Y, Zhao X, Chen J, Yang X, Ho SH, Wang B, Chang J, Shen Y (2017) Enhancing cell growth and lutein productivity of Desmodesmus sp. F51 by optimal utilization of inorganic carbon sources and ammonium salt. Bioresour Technol 244:664–671

    Article  CAS  Google Scholar 

  • Xu J, Cheng J, Xin K, Xu J, Yang W (2020) Developing a spiral-ascending CO2 dissolver to enhance CO2 mass transfer in a horizontal tubular photobioreactor for improved microalgal growth. ACS Sustain Chem Eng 8:18926–18935

    Article  CAS  Google Scholar 

  • Yang B, Liu J, Ma X, Guo B, Liu B, Wu T, Jiang Y, Chen F (2017) Genetic engineering of the Calvin cycle toward enhanced photosynthetic CO2 fixation in microalgae. Biotechnol Biofuels 10(1):1–13

    Article  Google Scholar 

  • You X, Yang L, Zhou X, Zhang Y (2022) Sustainability and carbon neutrality trends for microalgae-based wastewater treatment: a review. Environ Res 209:112860

    Article  CAS  Google Scholar 

  • Yue L, Chen W (2005) Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Convers Manag 46:1868–1876

    Article  CAS  Google Scholar 

  • Zhang Q, Cheng CL, Nagarajan D, Chang JS, Hu J, Lee DJ (2017) Carbon capture and utilization of fermentation CO2: integrated ethanol fermentation and succinic acid production as an efficient platform. Appl Energy 206:364–371

    Article  CAS  Google Scholar 

  • Zhang S, Liu Z (2021) Advances in the biological fixation of carbon dioxide by microalgae. J Chem Technol Biot 96:1475–1495

    Article  CAS  Google Scholar 

  • Zhang, Y., Huang, Y., Porter, A. L., Zhang, G., & Lu, J (2019) Discovering and forecasting interactions in big data research: a learning-enhanced bibliometric study. Technol Forecast Soc Change 146:795-807.

  • Zhang Z, Cai J, Chen F, Li H, Zhang W, Qi W (2018) Progress in enhancement of CO2 absorption by nanofluids: a mini review of mechanisms and current status. Renew Energy 118:527–535

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21808087) and the National Key Research and Development Program of China (2021YFC2102200).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Duan Zhou: data curation, formal analysis, investigation, methodology, visualization, and writing original draft. Jiawen Lu: data curation, validation. Pau Loke Show: conceptualization, formal analysis, and validation. Fubao Fuelbiol Sun: conceptualization, resources, and supervision. Hongyan Ren: conceptualization, funding acquisition, supervision, writing, review, and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongyan Ren.

Ethics declarations

Ethical approval

Research involving human participants and/or animals: not applicable.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

The authors affirm that participants provided informed consent for publication of all images in the figures.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 16 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Zhou, D., Lu, J. et al. Mapping the field of microalgae CO2 sequestration: a bibliometric analysis. Environ Sci Pollut Res 30, 78030–78040 (2023). https://doi.org/10.1007/s11356-023-27850-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27850-0

Keywords

Navigation