Skip to main content

Advertisement

Log in

Binary toxicity of engineered silica nanoparticles (nSiO2) and arsenic (III) to zebrafish (Danio rerio): application of response surface methodology

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Increasing production and use of engineered nanoparticles (NPs) leads to their release into the aquatic environments where they can interact with other hazardous contaminants, such as heavy metals, and threaten aquatic organisms. This study considers the ecotoxicity of arsenic (III) and silica nanoparticles (nSiO2), individually and simultaneously, to the zebrafish (Danio rerio) using response surface methodology (RSM) under central composite design (CCD). The results revealed that in the treatments within the concentration range of 1 to 5 mg L−1 arsenic and 1–100 mg L−1 nSiO2, no mortality was observed after 96 h. The optimal conditions for achieving the lowest effect of simultaneous toxicity in the concentration range of nSiO2 and arsenic were 100 and 7 mg L−1, respectively. Accordingly, the desirable function of the predicted model was found to be 0.78. According to these results, arsenic is toxic for zebrafish. Importantly, exposure to nSiO2 alone did not cause acute toxicity in the studied species, while arsenic toxicity decreased by increasing the concentration of nSiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Amini M, Younesi H, Bahramifar N, Lorestani AAZ, Ghorbani F, Daneshi A, Sharifzadeh M (2008) Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. J Hazard Mater 154(1–3):694–702

    Article  CAS  Google Scholar 

  • Bai C, Tang M (2019) Toxicological study of metal and metal oxide nanoparticles in zebrafish. J Appl Toxicol 40(1):37–63

    Article  Google Scholar 

  • Barone AN, Hayes CE, Kerr JJ, Lee RC, Flaherty DB (2019) Acute toxicity testing of TiO2-based vs. oxybenzone-based sunscreens on clownfish (Amphiprion ocellaris). Environ Sci Pollut Res 26(14):14513–14520

    Article  CAS  Google Scholar 

  • Bhavani K, Karuppasamy R (2014) Acute toxicity bioassay and behavioural changes on zebra fish, Danio rerio (Hamilton) under arsenic trioxide. Int J Modern Res Rev 2(1):40–46

    Google Scholar 

  • Chun H-S, Park D, Eun Lim S, Jeong K-H, Park J-S, Park H-J, Kang S, Kang KS, Park HG, An H-R, Huh YS, Lee Y-C (2017) Two zinc-aminoclays’ in-vitro cytotoxicity assessment in HeLa cells and in-vivo embryotoxicity assay in zebrafish. Ecotoxicol Environ Saf 137:103–112

    Article  CAS  Google Scholar 

  • DawitMoges F, Patel P, Parashar SKS, Das B (2020) Mechanistic insights into diverse nano-based strategies for aquaculture enhancement: a holistic review. Aquaculture 519:734770

    Article  Google Scholar 

  • Dong Z, Liu C, Liu Y, Yan K, Semple KT, Naidu R (2016) Using publicly available data, a physiologically-based pharmacokinetic model and Bayesian simulation to improve arsenic non-cancer dose-response. Environ Int 92–93:239–246

    Article  Google Scholar 

  • Dong Z, Liu Y, Duan L, Bekele D, Naidu R (2015) Uncertainties in human health risk assessment of environmental contaminants: a review and perspective. Environ Int 85:120–132

    Article  CAS  Google Scholar 

  • Duan J, Liang S, Yu Y, Li Y, Wang L, Wu Z, Chen Y, Miller MR, Sun Z (2018) Inflammation-coagulation response and thrombotic effects induced by silica nanoparticles in zebrafish embryos. Nanotoxicology 12(5):470–484

    Article  CAS  Google Scholar 

  • Dumitrescu E, Karunaratne DP, Prochaska MK, Liu X, Wallace KN, Andreescu S (2017) Developmental toxicity of glycine-coated silica nanoparticles in embryonic zebrafish. Environ Pollut 229:439–447

    Article  CAS  Google Scholar 

  • Fent K, Weisbrod CJ, Wirth-Heller A, Pieles U (2010) Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio rerio) early life stages. Aquat Toxicol (amsterdam, Netherlands) 100(2):218–228

    Article  CAS  Google Scholar 

  • Frenkel V, Kimmel E, Iger Y (2000) Ultrasound-facilitated transport of silver chloride (AgCl) particles in fish skin. J Control Release 68(2):251–261

    Article  CAS  Google Scholar 

  • Gao Y, Baisch P, Mirlean N, da Rodrigues Silva Júnior FM, Van Larebeke N, Baeyens W, Leermakers M (2018) Arsenic speciation in fish and shellfish from the North Sea (Southern bight) and Açu Port area (Brazil) and health risks related to seafood consumption. Chemosphere 191:89–96

    Article  CAS  Google Scholar 

  • Garelick H, Jones H, Dybowska A, Valsami-Jones E (2008) Arsenic pollution sources. Rev Environ Contam Toxicol 197:17–60

    CAS  Google Scholar 

  • Ghadersarbazi Z, Ghiasi F, Ghorbani F, Johari SA (2019) Toxicity assessment of arsenic on common carp (Cyprinus carpio) and development of natural sorbents to reduce the bioconcentration by RSM methodology. Chemosphere 224:247–255

    Article  CAS  Google Scholar 

  • Hu Q, Guo F, Zhao F, Fu Z (2017) Effects of titanium dioxide nanoparticles exposure on parkinsonism in zebrafish larvae and PC12. Chemosphere 173:373–379

    Article  CAS  Google Scholar 

  • Johari SA, Kalbassi MR, Soltani M, Yu IJ (2013) Toxicity comparison of colloidal silver nanoparticles in various life stages of rainbow trout (Oncorhynchus mykiss). Iran J Fish Sci 12(1):76–95

    Google Scholar 

  • Kabir T, Anwar S, TaslemMourosi J, Hossain J, Rabbane MG, Rahman MM, Tahsin T, Hasan MN, Shill MC, Hosen MJ (2020) Arsenic hampered embryonic development: An in vivo study using local Bangladeshi Danio rerio model. Toxicol Rep 7:155–161

    Article  CAS  Google Scholar 

  • Kaur A, Gupta U (2009) A review on applications of nanoparticles for the preconcentration of environmental pollutants. J Mater Chem 19(44):8279–8289

    Article  CAS  Google Scholar 

  • Kumar N, Gupta SK, Bhushan S, Singh NP (2019) Impacts of acute toxicity of arsenic (III) alone and with high temperature on stress biomarkers, immunological status and cellular metabolism in fish. Aquat Toxicol 214:105233

    Article  CAS  Google Scholar 

  • Lam SH, Winata CL, Tong Y, Korzh S, Lim WS, Korzh V, Spitsbergen J, Mathavan S, Miller LD, Liu ET, Gong Z (2006) Transcriptome kinetics of arsenic-induced adaptive response in zebrafish liver. Physiol Genomics 27(3):351–361

    Article  CAS  Google Scholar 

  • Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T (2009) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp Biochem Physiol C Toxicol Pharmacol 149(2):196–209

    Article  CAS  Google Scholar 

  • Lin S, Zhao Y, Nel AE, Lin S (2013) Zebrafish: an in vivo model for nano EHS studies. Small 9(9–10):1608–1618

    Article  CAS  Google Scholar 

  • Liu F, Gentles A, Theodorakis CW (2008) Arsenate and perchlorate toxicity, growth effects, and thyroid histopathology in hypothyroid zebrafish Danio rerio. Chemosphere 71(7):1369–1376

    Article  CAS  Google Scholar 

  • Liu P, Wang S, Chang Z, Li L, Xing H, Dong W-F (2021) Combined toxicity of silica nanoparticles and cadmium chloride on the cardiovascular system of zebrafish (Danio rerio) larvae. Comp Biochem Physiol c: Toxicol Pharmacol 239:108895

    CAS  Google Scholar 

  • Liu T-P, Wu S-H, Chen Y-P, Chou C-M, Chen C-T (2015) Biosafety evaluations of well-dispersed mesoporous silica nanoparticles: towards in vivo-relevant conditions. Nanoscale 7(15):6471–6480

    Article  CAS  Google Scholar 

  • Mahboub HH, Shahin K, Mahmoud SM, Altohamy DE, Husseiny WA, Mansour DA, Shalaby SI, Gaballa MMS, Shaalan M, Alkafafy M, Rahman ANA (2022) Silica nanoparticles are novel aqueous additive mitigating heavy metals toxicity and improving the health of African catfish, Clarias gariepinus. Aquat Toxicol 249:106238

    Article  CAS  Google Scholar 

  • Minetto D, VolpiGhirardini A, Libralato G (2016) Saltwater ecotoxicology of Ag, Au, CuO, TiO2, ZnO and C60 engineered nanoparticles: An overview. Environ Int 92–93:189–201

    Article  Google Scholar 

  • Onuegbu CU, Aggarwal A, Singh NB (2018) < JSIR 77(4), 213–218.pdf >. J Sci Ind Res 77:213–218

    CAS  Google Scholar 

  • Ray A, Shelly A, Roy S, Mazumder S (2020) Arsenic induced alteration in Mrp-1 like activity leads to zebrafish hepatocyte apoptosis: the cellular GSH connection. Environ Toxicol Pharmacol 79:103427

    Article  CAS  Google Scholar 

  • Rubinstein AL (2003) Zebrafish: from disease modeling to drug discovery. Curr Opin Drug Discov Devel 6(2):218–223

    CAS  Google Scholar 

  • Samuel S, Kathirvel R, Jayavelu T, Chinnakkannu P (2005) Protein oxidative damage in arsenic induced rat brain: influence of dl-α-lipoic acid. Toxicol Lett 155(1):27–34

    Article  CAS  Google Scholar 

  • Sanati AM, Kamari S, Ghorbani F (2019) Application of response surface methodology for optimization of cadmium adsorption from aqueous solutions by Fe3O4@SiO2@APTMS core–shell magnetic nanohybrid. Surfaces and Interfaces 17:100374

    Article  CAS  Google Scholar 

  • Sarkar S, Mukherjee S, Chattopadhyay A, Bhattacharya S (2014) Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: expression of antioxidant genes. Ecotoxicol Environ Saf 107:1–8

    Article  CAS  Google Scholar 

  • Scholz S, Fischer S, Gündel U, Küster E, Luckenbach T, Voelker D (2008) The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing. Environ Sci Pollut Res 15(5):394–404

    Article  CAS  Google Scholar 

  • Shankar S, Shanker U, Shikha A (2014) Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. Sci World J 2014:304524

    Article  Google Scholar 

  • Sun H-J, Zhang J-Y, Wang Q, Zhu E, Chen W, Lin H, Chen J, Hong H (2019) Environmentally relevant concentrations of arsenite induces developmental toxicity and oxidative responses in the early life stage of zebrafish. Environ Pollut 254:113022

    Article  CAS  Google Scholar 

  • Vranic S, Shimada Y, Ichihara S, Kimata M, Wu W, Tanaka T, Boland S, Tran L, Ichihara G (2019) Toxicological evaluation of SiO2 nanoparticles by zebrafish embryo toxicity test. Int J Mol Sci 20(4):882

    Article  CAS  Google Scholar 

  • Xu L, Wang Z, Zhao J, Lin M, Xing B (2020) Accumulation of metal-based nanoparticles in marine bivalve mollusks from offshore aquaculture as detected by single particle ICP-MS. Environ Pollut 260:114043

    Article  CAS  Google Scholar 

  • Yan K, Naidu R, Liu Y, Wijayawardena A, Duan L, Dong Z (2018) A pooled data analysis to determine the relationship between selected metals and arsenic bioavailability in soil. Int J Environ Res Public Health 15(5):888

  • Yongsheng R, Jun L, Xiaoxiao D (2011) Application of the central composite design and response surface methodology to remove arsenic from industrial phosphorus by oxidation. Can J Chem Eng 89(3):491–498

    Article  Google Scholar 

  • Zargar M, Hartanto Y, Jin B, Dai S (2017) Understanding functionalized silica nanoparticles incorporation in thin film composite membranes: interactions and desalination performance. J Membr Sci 521:53–64

    Article  CAS  Google Scholar 

  • Zhang F, Wang Z, Peijnenburg WJGM, Vijver MG (2022) Review and prospects on the ecotoxicity of mixtures of nanoparticles and hybrid nanomaterials. Environ Sci Technol 56(22):15238–15250

    Article  CAS  Google Scholar 

  • Zhu B, Han J, Lei L, Hua J, Zuo Y, Zhou B (2021) Effects of SiO2 nanoparticles on the uptake of tetrabromobisphenol A and its impact on the thyroid endocrine system in zebrafish larvae. Ecotoxicol Environ Saf 209:111845

    Article  CAS  Google Scholar 

  • Zhu B, He W, Hu S, Kong R, Yang L (2019) The fate and oxidative stress of different sized SiO2 nanoparticles in zebrafish (Danio rerio) larvae. Chemosphere 225:705–712

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the University of Kurdistan (UOK), which has financed the present research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Asoo Allahveisi, Ashkan Miri, Farshid Ghorbani, and Seyed Ali Johari. The first draft of the manuscript was written by Ashkan Miri and all authors commented on the new versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Farshid Ghorbani.

Ethics declarations

Ethics approval

All fish were treated according to the European Union guidelines concerning protection and animal welfare (Directive 2010/63/EU).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Bruno Nunes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 84 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allahveisi, A., Miri, A., Ghorbani, F. et al. Binary toxicity of engineered silica nanoparticles (nSiO2) and arsenic (III) to zebrafish (Danio rerio): application of response surface methodology. Environ Sci Pollut Res 30, 68655–68666 (2023). https://doi.org/10.1007/s11356-023-27066-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27066-2

Keywords

Navigation