Skip to main content
Log in

Distribution of Pb, Sr, and U isotopic signature and multielement composition of sediment in Lake Balaton (Hungary) at a sediment trap deep dredged 40 years ago near Balatongyörök—search for routes of recent pollution

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We studied the Pb, Sr, and U isotopic composition and the concentration of toxic metal elements in sediment core samples collected in Lake Balaton at a sediment trap that was deep dredged in 1979, to analyze their changes in the last 40 years. Pb isotopic composition profiles of cores taken from the sediment trap showed different 206Pb/207Pb ratios ranging from 1.206 ± 0.002 at the bottom of the core (phase 1) compared to 1.185 ± 0.002 at the top of the core (phase 2). Phase 2 is the fraction reflecting isotopic signatures of the latest 40 years. At 80–100-cm depth, a transition zone was observed. Pb concentration together with Zn, Sb, Cu, Cd, and Fe showed elevated, 2–4 times higher values in the top phase of the sediment. The calculated Pb isotopic composition of pollutant Pb fraction was 1.177 ± 0.005 in the case of the 206Pb/207Pb and 2.456 ± 0.004 for 208Pb/207Pb, which shows good agreement with literature data for lead ores in Poland and Germany, but it is distinct from literature data for leaded fuel concerning Middle and Eastern Europe. The marked difference in the Pb signatures of phases enabled the construction of a sediment deposition rate map. U and Mo showed a characteristic concentration peak positioned exactly at the depth of the Pb signature transition. The isotopic signature of U based on 234U and 235U also showed a similar pattern. We suggest that the deposition of U and Mo can be related to cyanobacterial blooms in Lake Balaton in the late 1970s and early1980s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Raw data generated during this study is available in .csv format, upon request sent to the contributing author.

References

  • Alfonso S, Grousset F, Massé L, Tastet JP (2001) A European lead isotope signal recorded from 6000 to 300 years BP in coastal marshes (SW France). Atmos Environ 35:3595–3605. https://doi.org/10.1016/S1352-2310(00)00566-5

    Article  CAS  Google Scholar 

  • Anderson RF, Fleisher MQ (1991) Uranium precipitation in Black Sea sediments. In: İzdar E, Murray JW (eds) Black Sea Oceanography. NATO ASI Series 351. https://doi.org/10.1007/978-94-011-2608-3_26

  • Ault WA, Senechal RG, Erlehach WE (1970) Isotopic composition as a natural tracer of lead in the environment. Environ Sci Technol 4:305–313

    Article  CAS  Google Scholar 

  • Barsanti M, Garcia-Tenorio R, Schirone A, Rozmaric M, Ruiz-Fernandez AC, Sanchez-Cabeza JA, Delbono I, Conte F, De Oliviera Godoy JM, Heijnis H, Eriksson M, Hatje V, Laissaoui A, Nguyen HQ, E, Al-Rousan SA, Uddin S, Yii MW, Osvath I (2020) Challenges and limitations of the 210Pb sediment dating method: results from an IAEA modeling interlaboratory comparison exercise. Quaternary Geochronology 59:101093 https://doi.org/10.1016/j.quageo.2020.101093

  • Binczycki T, Tyszka R, Weber J (2014) Heavy isotope analyses in soil sciences: possibilities and challenges. Pol J Environ Stud 23(2):303–307

    CAS  Google Scholar 

  • Bollhöfer A, Rosman KJR (2000) Isotopic source signatures for atmospheric lead: the Southern Hemisphere. Geochemica Et Cosmochimica Acta 64(19):3251–3262. https://doi.org/10.1016/S0016-7037(00)00436-1

    Article  Google Scholar 

  • Bollhöfer A, Rosman KJR (2001) Isotopic source signatures for atmospheric lead: the Northern Hemisphere. Geochemica Et Cosmochimica Acta 65(11):1727–1740. https://doi.org/10.1016/S0016-7037(00)00630-X

    Article  Google Scholar 

  • Boy J, Wilcke W (2008) Tropical Andean Forest derives calcium and magnesium from Saharan dust. Global Biogeochemical Cycles 22:GB0127. https://doi.org/10.1029/2007GB002960

  • Boyle J (2001) Redox remobilization and the heavy metal record in lake sediments: a modeling approach. J Paleolimnol 26:423–431. https://doi.org/10.1023/A:1012785525239

    Article  Google Scholar 

  • Brannwal ML, Bindler R, Emteryd O, Renberg I (2001) Four thousand years of atmospheric lead pollution in northern Europe: a summary from Swedish lake sediment. J Paleolimnol 25:421–435. https://doi.org/10.1023/A:1011186100081

    Article  Google Scholar 

  • Broomandi P, Guney M, Kim JR, Karaca F (2020) Soil contamination in areas impacted by military activities: a critical review. Sustainability 12:9002. https://doi.org/10.3390/su12219002

    Article  Google Scholar 

  • Budai T, Koloszár L (1987) Stratigraphic investigation of the Norian-Rhaetianformations in the Keszthely Mountains (in Hungarian). Bull Hungarian Geol Soc 117:121–130

    Google Scholar 

  • Csepregi A (2007) Effect of karst water extraction on the water balance of Trans-Danubian Mountains (in Hungarian: a Karsztvízteremelés hatása a Dunántúli-Középhegység vízháztartására). in: L Alföldi, L Kapolyi (eds) Bányászati karsztvízszint süllyesztés a Dunántúli-Középhegységben. (Drop of karst water level due to mining operations in Trans-Danubian Mountains) 3:77–138

  • Escobar J, Whitmore TJ, Kamenov GD, Riedinger Whitmore MA (2013) Isotope record of anthropogenic lead pollution in lake sediments of Florida, USA. J Paleolimnol 49:237–252. https://doi.org/10.1007/s10933-012-9671-9

    Article  Google Scholar 

  • Ettler V, Mihaljevic M, Sebek O, Moleka M, Grygar T, Zeman J (2006) Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Prˇı´bram, Czech Republic. Environ Pollut 142:409–417. https://doi.org/10.1016/j.envpol.2005.10.024

    Article  CAS  Google Scholar 

  • Glass JB, Wolfe-Simon F, Anbar AD (2008) Molybdenum storage in cyanobacteria: mopping up excess Mo. American Geophysical Union, Fall Meeting abstract id. B21B-0343

  • Gourgiotis A, Mangeret A, Manhès G, Blanchart P, Stetten L, Morin G, Le Pape P, Lefebvre P, Le Coz M, Cazala C (2020) New insights into Pb isotope fingerprinting of U-mine material dissemination in the environment: Pb isotopes as a memory dissemination tracer. Environ Sci Technol 4(2):797–806. https://doi.org/10.1021/acs.est.9b04828

    Article  CAS  Google Scholar 

  • Graney JR, Halliday AN, Keller GJ, Nriagu JO, Robbins JA, Norton SA (1995) Isotopic record of lead pollution in lake sediment from the northeastern United States. Geochemica Et Cosmochimica Acta 59(9):1715–1727. https://doi.org/10.1016/0016-7037(95)00077-D

    Article  CAS  Google Scholar 

  • Hamelin B, Grousset FE, Biscaye PE, Zindler A (1989) Lead isotopes in trade wind aerosols at Barbados the influence of European emissions over the North Atlantic. J Geophys Res 94(102):16243–16250. https://doi.org/10.1029/JC094iC11p16243

    Article  Google Scholar 

  • Hong S, Candelone JP, Patterson CC, Boutron CF (1994) Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Science 265(5180):1841–1843. https://doi.org/10.1126/science.265.5180.1841

    Article  CAS  Google Scholar 

  • Hopper JF, Boss HB, Sturges WT, Barrie LA (1991) Regional source discrimination of atmospheric aerosols in Europe using the isotopic composition of lead. Tellus 43b:45–60. https://doi.org/10.3402/tellusb.v43i1.15245

  • Irrgeher J (2015) Chapter 8. Measurement Strategies. in: T Prohaska, J Irregher, A Zitek, N Jakubowsky (eds) Sector field mass spectrometry for elemental and isotopic analysis pp 126–151

  • Jámbor Á (2012) Quaternary Evolution. Haas (ed) Geology of Hungary, in regional geology reviews, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21910-8_4

  • Jobbágy V, Kavasi N, Somlai J, Kardos R, Kovacs T, Dombovari P (2010) Jobbagy, V., Kavasi, N., Somlai, J., Kardos, R., Kovacs, T., & Dombovari, P. (2010). Radioanalytical investigations of uranium concentrations in natural spring, mineral, spa, and drinking waters in Hungary. J Radioanal Nuclear Chem 286(2):417-422

  • Kalin M, Wheeler WN, Meinrath GT (2005) The removal of uranium from mining wastewater using algal/microbial biomass. J Environ Radioact 78(2):157–177. https://doi.org/10.1016/j.jenvrad.2004.05.002

    Article  CAS  Google Scholar 

  • Kamenov GD, Brenner M, Tucker L (2009) Anthropogenic versus natural control on trace element and Sr–Nd–Pb isotope stratigraphy in peat sediments of southeast Florida (USA), 1500 AD to present. Geochemica Et Cosmochimica Acta 73(12):3549–3567. https://doi.org/10.1016/j.gca.2009.03.017

    Article  CAS  Google Scholar 

  • Kamenov GD, Escobar j, Arnold TE, Pardo-Trujillo A, Gangoity G, Hoyos N, Curtis JH, Bird BW, Velez MI, Vallejo F, Trejos-Tamayo R (2020) Appearance of an enigmatic Pb source in South America around 2000 BP: anthropogenic vs natural origin. Geochemica et Cosmochimica Acta 276:122-134. https://doi.org/10.1016/j.gca.2020.02.031

  • Kamenov GD, Gulson BL (2014) The Pb isotopic record of historical to modern human lead exposure. Sci Total Environ 490:861–870. https://doi.org/10.1016/j.scitotenv.2014.05.085

    Article  CAS  Google Scholar 

  • Kemp AC, Sommerfield CK, Vane CH, Horton BP, Chenery S, Anisfeld S, Nikitina D (2012) Use of lead isotopes for developing chronologies in recent salt-marsh sediments. Quat Geochronol 12:40–49. https://doi.org/10.1016/j.quageo.2012.05.004

    Article  Google Scholar 

  • Krachler M, Mohl C, Emons H, Shotyk W (2003) Atmospheric deposition of V, Cr, and Ni since late glacial: effect of climatic cycles human impacts and comparison with crustal abundances. Environ Sci Technol 37:2658–2667. https://doi.org/10.1021/es0263083

    Article  CAS  Google Scholar 

  • Kutics K (2021) Experiences and future plans regarding the dredging of Lake Balaton sediments (in Hungarian). Experiences and good practices to tackle eutrophication in shallow lakes applying thin layer sediment dredging technologies: Online Seminar of Lake Balaton Development Council (LBDC) and Lake Balaton Development Coordination Agency (LBDCA)

  • Kylander ME, Weiss DJ, Martínez Cortízas A, Spiro B, Garcia-Sanchez R, Coles BJ (2005) Refining the pre-industrial atmospheric Pb isotope evolution curve in Europe using an 8000-year-old peat core from NW Spain. Earth Planet Sci Lett 240(2):467–485. https://doi.org/10.1016/j.epsl.2005.09.024

    Article  CAS  Google Scholar 

  • Mann H, Fyfe WS (1985) Uranium uptake by algae: experimental and natural environments. Can J Earth Sci 22(12):1899–1903

    Article  CAS  Google Scholar 

  • McFarland MJ, Hauer ME, Reuben A () Half of US population exposed to adverse lead levels in early childhood. Proceedings of the National Academy of Sciences 119(11):e2118631119. https://doi.org/10.1073/pnas.2118631119

  • Mezősi G, Blanka V, Bata T, Kovács F, Meyer B (2015) Estimation of regional differences in wind erosion sensitivity in Hungary. Nat Hazard 15:97–107. https://doi.org/10.5194/nhess-15-97-2015

    Article  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace elements. Nature 333:134–139

    Article  CAS  Google Scholar 

  • Nyachoti S, Jin L, Tweedie CE, Ma L (2017) Insight into factors controlling formation rates of pedogenic carbonates: a combined geochemical and isotopic approach in dryland soils of the US Southwest. Chemical Geology 20:118503. https://doi.org/10.1016/j.chemgeo.2017.10.014

  • Pálffy K (2013) Social conflict generating ecological developments in the life of Lake Balaton in recent decades – eutrophication, the green discoloration of the water. Acta Scientiarum Socialium 39:37–44

    Google Scholar 

  • Rastogi RP, Madamwaar D, Incharoensakdi A (2015) Bloom dynamics of cyanobacteria and their toxins: environmental health impacts and mitigation strategies. Frontiers in Microbiology 6(1254). https://doi.org/10.3389/fmicb.2015.01254

  • Raucsik B, Varga A, Peterdi A (2006) Inorganic geochemical characteristics of the Upper Triassic rocks from borehole Rezi Rzt–1 (Kössen Formation, Keszthely Mountains, Hungary): a palaeoenvironmental study. Bull Hungarian Geol Soc 136(4):465–485 (in Hungarian)

    Google Scholar 

  • Resongles E, Dietze V, Green DC, Harrison RM, Ochoa-Gonzalez R, Tremper AH, Weiss DJ (2021) Strong evidence for the continued contribution of lead deposited during the 20th century to the atmospheric environment in London of today. Process Natl Acad Sci 118(26):e2102791118. https://doi.org/10.1073/pnas.2102791118

    Article  CAS  Google Scholar 

  • Reynolds PH (1971) A U-Th-Pb lead isotope study of rocks and ores from Broken Hill, Australia. Earth Planet Sci Lett 12:215–223

    Article  CAS  Google Scholar 

  • Richards JR (1986) Lead isotopic signatures: further examination of comparisons between South Africa and Western Australia. Trans Geol Soc South Africa 89:285–304

    Google Scholar 

  • Russell RD, Farquhar RM (1960) Lead isotopes in geology. Wiley and Sons, New York

    Google Scholar 

  • Sanchez-Cabeza JA, Ruiz-Fernandez AC (2012) 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochemica Et Cosmochimica Acta 82:183–200. https://doi.org/10.1016/j.gca.2010.12.024

    Article  CAS  Google Scholar 

  • Sharrat B, Auvermann B (2014) Dust pollution from agriculture. Encyclopedia of Agriculture and Food Systems p 487–509. https://doi.org/10.1016/B978-0-444-52512-3.00089-9

  • Sztáno O, Magyar I, Szónoky M, Lantos M, Müller P, Lenkey L, Katona L, Csillag G (2013) Tihany Formation in the surroundings of Lake Balaton: type locality, depositional setting the, and stratigraphy. Bull Hungarian Geol Soc 143(1):73–98

    Google Scholar 

  • Takacs P, Turcsanyi B, Bíró P (2013) Social conflict generating ecological developments in the life of Lake Balaton in recent decades – mass fish kills. Acta Scientiarum Socialium 39:51–56 (in Hungarian)

    Google Scholar 

  • Van den Berg GA, Meijers GG, van der Heijdt LM, Zwolsman JJ (2001) Dredging-related mobilisation of trace metals: a case study in The Netherlands. Water Res 35(8):1979–1986. https://doi.org/10.1016/S0043-1354(00)00452-8

    Article  Google Scholar 

  • Wang J, Yu D, Wang Y, Du X, Li G, Zhao Y, Wei Y, Xu S (2021) Source analysis of heavy metal pollution in agricultural soil irrigated with sewage in Wuqing Tinjin. Sci Reports 11:17816. https://doi.org/10.1038/s41598-021-96367-8

    Article  CAS  Google Scholar 

  • White JR, Gubala CP (1990) Sequentially extracted metals in Adirondack Lake sediment cores. J Paleolimnol 3:243–252. https://doi.org/10.1007/BF00219460

    Article  Google Scholar 

  • Zhang S, Zhou Q, Xu D, Lin J, Cheng S, Wu Z (2010) Effects of sediment dredging on water quality and zooplankton community structure in a shallow of eutrophic lake. J Environ Sci 22(2):218–224. https://doi.org/10.1016/s1001-0742(09)60096-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Zoltán Világosi and the sample collection team of Balint Analitika LLC. We wish to thank for precise work of Anna J. Horváth, Csongor Szalóki, and Mária B. Nándori, assistants of the inorganic chemistry laboratory.

Funding

This work was supported by the National Research, Development, and Innovation Office (Hungary, NKFIH, Nemzeti Kutatási Fejlesztési és Innovációs Hivatal) grant number: KFI_16-1–2017-0240.

Author information

Authors and Affiliations

Authors

Contributions

Dániel Ernő Beyer and János K. Pánczél designed the study and carried out data evaluation of isotopic analysis, and Mária Varga and Páter Fazekas carried out measurements and data evaluation of concentrations.

Corresponding author

Correspondence to Dániel Ernő Beyer.

Ethics declarations

Ethical approval

The authors of this paper declare that due to the nature of the research published (inorganic analysis of sediment samples), it does not require ethical approval.

Consent to participate

Human individuals or samples derived from human sources were not subjects of this study.

Consent for publication

All authors have given their full consent to publish their research.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Xianliang Yi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyer, D.E., Varga, M., Fazekas, P. et al. Distribution of Pb, Sr, and U isotopic signature and multielement composition of sediment in Lake Balaton (Hungary) at a sediment trap deep dredged 40 years ago near Balatongyörök—search for routes of recent pollution. Environ Sci Pollut Res 30, 42311–42326 (2023). https://doi.org/10.1007/s11356-022-25120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-25120-z

Keywords

Navigation