Skip to main content
Log in

Multi-scale spatial analysis of satellite-retrieved surface evapotranspiration in Beijing, a rapidly urbanizing region under continental monsoon climate

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

As one of the important components of hydrological cycle, evapotranspiration spatial distribution is of great significance to regional water resources planning and rational utilization. This research used Surface Energy Balance System model to estimate the daily evapotranspiration (ET) in Beijing based on Landsat 8 observations. Results showed that the daily ET in Beijing ranged from 3.469 to 5.474 mm/day. ET is known to decrease with the increase of land surface temperature (LST) and to increase with the increase of Normalized Difference Vegetation Index (NDVI). NDVI primarily decreased from the northwest to the southeast. When the NDVI value was 0.4–0.6, the average ET peaked at 4.88 mm/day, and then slightly decreased by 3.7%. The coefficient of determination of NDVI (0.95) was much greater than that of LST (0.30) upon linear fitting, showing LST was not the main factor controlling ET in Beijing. In contrast to the linear fitting results, the spatial correlation between LST and ET is more significant than that between NDVI and ET in the global bivariate spatial analysis, where the absolute value of global bivariate Moran’s I of LST (0.51) was higher than that of NDVI (0.21) at a resolution of 150 m. And the univariate spatial autocorrelation indices of LST, ET, and NDVI equaled 0.84, 0.65, and 0.51, respectively. Furthermore, the complex spatial distribution pattern of variables could significantly affect the correlation analysis results. Local bivariate spatial analysis showed that over 60% of the Beijing area had a significant correlation, of which the negative correlation area of LST accounted for about 85%, and the positive correlation area of NDVI accounted for 74%. By improving the correlation analysis accuracy, the regional conditions for the establishment of correlation analysis results were clarified from the overall correlation analysis results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data used to support the findings of this study are available from the corresponding author upon request.

References

Download references

Acknowledgements

The authors thank the editors and anonymous reviewers for their valuable comments and suggestions.

Funding

This study was funded by the National Key Research and Development Program of China (2017YFA0605001).

Author information

Authors and Affiliations

Authors

Contributions

LiJun Jiao: conceptualization, methodology, software, writing—original draft. Ruimin Liu: conceptualization, writing—review and editing. Lin Li: visualization, investigation. Leiping Cao: resources, investigation.

Corresponding author

Correspondence to Ruimin Liu.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Marcus Schulz

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Jiao, L., Liu, Y. et al. Multi-scale spatial analysis of satellite-retrieved surface evapotranspiration in Beijing, a rapidly urbanizing region under continental monsoon climate. Environ Sci Pollut Res 30, 20402–20414 (2023). https://doi.org/10.1007/s11356-022-23580-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-23580-x

Keywords

Navigation