Skip to main content

Advertisement

Log in

Review of alternative ash aggregates in concrete-solution towards waste management and environmental protection

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Owing to the depletion of natural resources, new alternative materials are emerging in construction industry. Especially, development of alternative binders and aggregates using industrial by-products paves way for the development of eco-friendly concrete. As aggregates occupy about 60–70% of the volume of concrete, new alternative materials developed as a substitute for aggregates are considered as need of the day for achieving sustainability in concrete industry. In the past few decades, many industrial by-products are researched as an alternative for natural aggregates. Ash being the largely produced by-products from different industries, it has huge potential in the development of artificial aggregates. Nevertheless, ashes produced from different sources such as coal, municipal solid waste and biomass have different characteristics and affect the properties of aggregates made out of them. The volume of research works reported on development of ash aggregates all over the globe shows that there is a faster growth rate in the development of alternative aggregates and its utilization in concrete. In this context, the current study aims to review the literature reported on mortar/concrete made of ash aggregates from various sources such as thermal power stations, biomass and municipal solid waste incinerator. The characteristics of different types of ash, development of aggregate and its properties in mortar/concrete are reviewed. Based on the review, future recommendations and directions are provided to utilize more of ash aggregates in the place of natural aggregates to prevent depletion of natural resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data available regarding the study are presented in the article.

Abbreviations

BA:

biomass ash

BMBA:

biomass bottom ash

BMFA:

biomass fly ash

CA:

coal ash

CBA:

coal bottom ash

CFA:

coal fly ash

FA:

fly ash

ISW:

industrial solid waste

LWA:

lightweight aggregates

MSWA:

municipal solid waste incineration ash

MSWBA:

municipal solid waste incineration bottom ash

MSWFA:

municipal solid waste incineration fly ash

References

  • Abbà A, Collivignarelli MC, Sorlini S, Bruggi M (2014) On the reliability of reusing bottom ash from municipal solid waste incineration as aggregate in concrete. Compos Part B: Eng 58:502–509

    Article  CAS  Google Scholar 

  • Agrawal US, Wanjari SP, Naresh DN (2017) Characteristic study of geopolymer fly ash sand as a replacement tonatural river sand. Constr Build Mater 150:681–688

    Article  CAS  Google Scholar 

  • Ahmed SFU (2014) Existence of dividing strength in concrete containing recycled coarse aggregate. J Mater Civ Eng 26(4):784–788

    Article  Google Scholar 

  • Al-Akhras NM, Abu-Alfoul BA (2002) Effect of wheat straw ash on mechanical properties of autoclaved mortar. Cem Concr Res 32(6):859–863

    Article  CAS  Google Scholar 

  • Al-Ghouti MA, Khan M, Nasser MS, Al-Saad K, Heng OE (2021) Recent advances and applications of municipal solid wastes bottom and fly ashes: Insights into sustainable management and conservation of resources. Environ Technol Innov 21:101267

    Article  Google Scholar 

  • Al-Rawas AA, Hago AW, Taha R, Al-Kharousi K (2005) Use of incinerator ash as a replacement for cement and sand in cement mortars. Build Environ 40(9):1261–1266

    Article  Google Scholar 

  • Allegrini E, Vadenbo C, Boldrin A, Astrup TF (2015) Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash. J Environ Manag 151:132–143

    Article  CAS  Google Scholar 

  • American Concrete Institute ACI Committee (2011) Building code requirements for structural concrete ACI 318-08 and commentary 318R-11. ACI 318-08/318R-11. American Concrete Institute, Farmington Hills, MI, USA

    Google Scholar 

  • Amin N-u (2011) Use of bagasse ash in concrete and its impact on the strength and chloride resistivity. J Mater Civ Eng 23(5):717–720

    Article  CAS  Google Scholar 

  • Aslam M, Shafigh P, Jumaat MZ (2016) Oil-palm by-products as lightweight aggregate in concrete mixture: a review. J Clean Prod 126:56–73

    Article  Google Scholar 

  • Balapour M, Zhao W, Garboczi EJ, Oo NY, Spatari S, Grace Hsuan Y, Billen P, Farnam Y (2020) Potential use of lightweight aggregate (LWA) produced from bottom coal ash for internal curing of concrete systems. Cem Concr Compos 105:103428

    Article  CAS  Google Scholar 

  • Baykal G, Döven AG (2000) Utilization of fly ash by pelletization process; theory, application areas and research results. Resour Conserv Recycl 30(1):59–77

    Article  Google Scholar 

  • Beltrán MG, Agrela F, Barbudo A, Ayuso J, Ramírez A (2014) Mechanical and durability properties of concretes manufactured with biomass bottom ash and recycled coarse aggregates. Constr Build Mater 72:231–238

    Article  Google Scholar 

  • Beltrán MG, Barbudo A, Agrela F, Jiménez JR, de Brito J (2016) Mechanical performance of bedding mortars made with olive biomass bottom ash. Constr Build Mater 112:699–707

    Article  CAS  Google Scholar 

  • Bertolini L, Carsana M, Cassago D, Curzio AQ, Collepardi M (2004) MSWI Ashes as mineral additions in concrete. Cem Concr Res 34(10):1899–1906

    Article  CAS  Google Scholar 

  • Bhatt A, Priyadarshini S, Mohanakrishnan AA, Abri A, Sattler M, Techapaphawit S (2019) Physical, chemical, and geotechnical properties of coal fly ash: a global review. Case Stud Constr Mater 11:e00263. https://doi.org/10.1016/j.cscm.2019.e00263

    Article  Google Scholar 

  • Bheel N, Kumar A, Shahzaib J, Ali Z, Ali M (2022a) An investigation on fresh and hardened properties of concrete blended with rice husk ash as cementitious ingredient and coal bottom ash as sand replacement material. Silicon 14:677–688

    Article  CAS  Google Scholar 

  • Bheel N, Khoso S, Baloch MH, Benjeddou O, Alwetaishi M (2022b) Use of waste recycling coal bottom ash and sugarcane bagasse ash as cement and sand replacement material to produce sustainable concrete. Environ Sci Pollut Res: https://doi.org/10.1007/s11356--022--19478--3

  • Bheel N, Awoyera PO, Olalusi OB (2021) Engineering properties of concrete with a ternary blend of fly ash, wheat straw ash, and maize cob ash. Int J Eng Res Afr 54:43–55

    Article  Google Scholar 

  • Bilir T, Gencel O, Topcu IB (2015) Properties of mortars with fly ash as fine aggregate. Constr Build Mater 93:782–789

    Article  Google Scholar 

  • Binici H, Yucegok F, Aksogan O, Kaplan H (2008) Effect of corncob, wheat straw, and plane leaf ashes as mineral admixtures on concrete durability. J Mater Civ Eng 20(7):478–483

    Article  CAS  Google Scholar 

  • Blissett RS, Rowson NA (2012) A review of the multi-component utilisation of coal fly ash. Fuel 97:1–23

    Article  CAS  Google Scholar 

  • Cabrera M, Galvin AP, Agrela F, Carvajal MD, Ayuso J (2014) Characterisation and technical feasibility of using biomass bottom ash for civil infrastructures. Constr Build Mater 58:234–244

    Article  Google Scholar 

  • Chen H-J, Wang S-Y, Tang C-W (2010a) Reuse of incineration fly ashes and reaction ashes for manufacturing lightweight aggregate. Constr Build Mater 24(1):46–55

    Article  Google Scholar 

  • Chen H-J, Wang S-Y, Tang C-W (2010b) Reuse of incineration fly ashes and reaction ashes for manufacturing lightweight aggregate. Constr Build Mater 24(1):46–55

    Article  Google Scholar 

  • Chen X, Xu Z, Yao Z, Shuai Q, Jiang Z, Xi P, Li Y, An R, Jiang X, Li H (2020) Preparation of non-sintered lightweight aggregates through co-mechanochemical treatment of oil-contaminated drill cuttings, circulation fluidized bed combustion fly ash, and quicklime. Environ Sci Pollut Res 27:20904–20911

    Article  CAS  Google Scholar 

  • Chiang K-Y, Chou P-H, Hua C-R, Chien K-L, Cheeseman C (2009) Lightweight bricks manufactured from water treatment sludge and rice husks. J Hazard Mater 171(1–3):76–82

    Article  CAS  Google Scholar 

  • Chimenos JM, Segarra M, Fernández MA, Espiel F (1999) Characterization of the bottom ash in municipal solid waste incinerator. J Hazard Mater 64(3):211–222

    Article  CAS  Google Scholar 

  • Chindaprasirt P, Jaturapitakkul C, Rattanasak U (2009) Influence of fineness of rice husk ash and additives on the properties of lightweight aggregate. Fuel 88(1):158–162

    Article  CAS  Google Scholar 

  • Chuang K-H, Lu C-H, Chen J-C, Wey M-Y (2018) Reuse of bottom ash and fly ash from mechanical-bed and fluidized-bed municipal incinerators in manufacturing lightweight aggregates. Ceram Int 44(11):12691–12696

    Article  CAS  Google Scholar 

  • Cioffi R, Colangelo F, Montagnaro F, Santoro L (2011) Manufacture of artificial aggregate using MSWI bottom ash. Waste Manag 31(2):281–288

    Article  CAS  Google Scholar 

  • Colangelo F, Messina F, Cioffi R (2015) Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates. J Hazard Mater 299:181–191

    Article  CAS  Google Scholar 

  • Cuenca J, Rodríguez J, Martín-Morales M, Sánchez-Roldán Z, Zamorano M (2013) Effects of olive residue biomass fly ash as filler in self-compacting concrete. Constr Build Mater 40:702–709

    Article  Google Scholar 

  • de Brito J, Saikia N (2013) Recycled aggregate in Concrete. Springer, London

    Book  Google Scholar 

  • del Valle-Zermeño R, Formosa J, Chimenos JM, Martínez M, Fernández AI (2013) Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material. Waste Manag 33(3):621–627

    Article  CAS  Google Scholar 

  • Dou X, Ren F, Nguyen MQ, Ahamed A, Ke Y, Chan WP, Chang VW-C (2017) Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renew Sust Energ Rev 79(Supplement C):24–38

    Article  CAS  Google Scholar 

  • Dwivedi A, Jain MK (2014) Fly ash – waste management and overview : A review. Recent Res Sci Technol 6:30–35

    Google Scholar 

  • Dyer TD, Dhir RK (2004) Hydration reactions of cement combinations containing vitrified incinerator fly ash. Cem Concr Res 34(5):849–856

    Article  CAS  Google Scholar 

  • El-Didamony H, El-Rahman EA, Osman RM (2012) Fire resistance of fired clay bricks—fly ash composite cement pastes. Ceram Int 38(1):201–209

    Article  CAS  Google Scholar 

  • Erol M, Küçükbayrak S, Ersoy-Mericboyu A (2009) The influence of the binder on the properties of sintered glass-ceramics produced from industrial wastes. Ceram Int 35(7):2609–2617

    Article  CAS  Google Scholar 

  • Ferreira C, Ribeiro A, Ottosen L (2003) Possible applications for municipal solid waste fly ash. J Hazard Mater 96(2):201–216

    Article  CAS  Google Scholar 

  • Ferraris M, Salvo M, Ventrella A, Buzzi L, Veglia M (2009) Use of vitrified MSWI bottom ashes for concrete production. Waste Manag 29(3):1041–1047

    Article  CAS  Google Scholar 

  • Gesoğlu M, Güneyisi E, Öz HÖ (2012) Properties of lightweight aggregates produced with cold-bonding pelletization of fly ash and ground granulated blast furnace slag. Mater Struct 45(10):1535–1546

    Article  CAS  Google Scholar 

  • Gesoğlu M, Güneyisi E, Özturan T, Öz HÖ, Asaad DS (2014) Permeation characteristics of self compacting concrete made with partially substitution of natural aggregates with rounded lightweight aggregates. Constr Build Mater 59:1–9

    Article  Google Scholar 

  • Ghosh SK, Kumar V (2020) Circular economy and Fly Ash Management

  • Giro-Paloma J, Mañosa J, Maldonado-Alameda A, Quina MJ, Chimenos JM (2019) Rapid sintering of weathered municipal solid waste incinerator bottom ash and rice husk for lightweight aggregate manufacturing and product properties. J Clean Prod 232:713–721

    Article  CAS  Google Scholar 

  • Güneyisi E, Gesoglu M, Azez OA, Öz HÖ (2015) Physico-mechanical properties of self-compacting concrete containing treated cold-bonded fly ash lightweight aggregates and sio2 nano-particles. Construction and Building Materials 101. Part 1:1142–1153

    Google Scholar 

  • González-Corrochano B, Alonso-Azcárate J, Rodríguez L, González-Corrochano AP, Beatriz JA-A, Rodríguez L, Lorenzo AP, Torío MF, Ramos JJT, Corvinos MD, Muro C (2016) Valorization of washing aggregate sludge and sewage sludge for lightweight aggregates production. Constr Build Mater 116:252–262

    Article  CAS  Google Scholar 

  • Hamada H, Alattar A, Tayeh B, Yahaya F, Adesina A (2022) Sustainable application of coal bottom ash as fine aggregates in concrete: a comprehensive review. Case Stud Constr Mater 16:e01109

    Google Scholar 

  • Hamada HM, Yahaya FM, Muthusamy K, Jokhio GA, Humada AM (2019) Fresh and hardened properties of palm oil clinker lightweight aggregate concrete incorporating nano-palm oil fuel ash. Constr Build Mater 214:344–354

    Article  CAS  Google Scholar 

  • Hannan NIRR, Shahidan S, Ali N, Bunnori NM, Zuki SSM, Ibrahim MHW (2020) Acoustic and non-acoustic performance of coal bottom ash concrete as sound absorber for wall concrete. Case Stud Constr Mater 13:e00399

    Google Scholar 

  • Harikrishnan K, Ramamurthy K (2006) Influence of pelletization process on the properties of fly ash aggregates. Waste Manag 26:846–852

    Article  CAS  Google Scholar 

  • Hemalatha T, Mapa M, George N, Sasmal S (2016) Physico-chemical and mechanical characterization of high volume fly ash incorporated and engineered cement system towards developing greener cement. J Clean Prod 125:268–281

    Article  CAS  Google Scholar 

  • Hemalatha T, Ramaswamy A (2017) A review on fly ash characteristics-towards promoting high volume utilization in developing sustainable concrete. J Clean Prod 147:546–559

    Article  Google Scholar 

  • Hinojosa MJR, Galvín AP, Agrela F, Perianes M, Barbudo A (2014) Potential use of biomass bottom ash as alternative construction material: conflictive chemical parameters according to technical regulations. Fuel 128:248–259

    Article  CAS  Google Scholar 

  • Huang C-M, Yang W-F, Ma H-W, Song Y-R (2006) The potential of recycling and reusing municipal solid waste incinerator ash in Taiwan. Waste Manag 26(9):979–987

    Article  Google Scholar 

  • Huang S-C, Chang F-C, Lo S-L, Lee M-Y, Wang C-F, Lin J-D (2007) Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. J Hazard Mater 144(1–2):52–58

    Article  CAS  Google Scholar 

  • Huber F, Blasenbauer D, Aschenbrenner P, Fellner J (2020) Complete determination of the material composition of municipal solid waste incineration bottom ash. Waste Manag 102:677–685

    Article  CAS  Google Scholar 

  • Hwang C-L, Le A-TB, Lin K-L, Lo C-T (2012) Manufacture and performance of lightweight aggregate from municipal solid waste incinerator fly ash and reservoir sediment for self-consolidating lightweight concrete. Cem Concr Compos 34(10):1159–1166

    Article  CAS  Google Scholar 

  • Rübner K, Haamkens F, Linde O (2008) Use of municipal solid waste incinerator bottom ash as aggregate in concrete. Q J Eng Geol Hydrogeol 41(4):459–464

    Article  CAS  Google Scholar 

  • Kalinkin AM, Gurevich BI, Kalinkina EV, Chislov MV, Zvereva IA (2021) Geopolymers based on mechanically activated fly ash blended with dolomite. Minerals 11(7):700

    Article  CAS  Google Scholar 

  • Kayali O (2008) Fly ash lightweight aggregates in high performance concrete. Constr Build Mater 22(12):2393–2399

    Article  Google Scholar 

  • Kaza S, Yao LC, Bhada-Tata P, Van Woerden F (2018) What a Waste 2.0. Number 30317 in World Bank Publications. The World Bank

  • Keulen A, van Zomeren A, Harpe P, Aarnink W, Simons HAE, Brouwers HJH (2016) High performance of treated and washed mswi bottom ash granulates as natural aggregate replacement within earth-moist concrete. Waste Manage 49:83–95

    Article  CAS  Google Scholar 

  • Khan A, de Jong W, Jansens PJ, Spliethoff H (2009) Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process Technol 90:21–50

    Article  CAS  Google Scholar 

  • Kim HK, Ha KA, Lee Haeng-Ki (2016a) Internal-curing efficiency of cold-bonded coal bottom ash aggregate for high-strength mortar. Constr Build Mater 126:1–8

    Article  Google Scholar 

  • Kockal NU, Ozturan T (2011) Durability of lightweight concretes with lightweight fly ash aggregates. Constr Build Mater 25(3):1430–1438

    Article  Google Scholar 

  • Kunchariyakun K, Asavapisit S, Sombatsompop K (2015) Properties of autoclaved aerated concrete incorporating rice husk ash as partial replacement for fine aggregate. Cem Concr Compos 55(Supplement C):11–16

    Article  CAS  Google Scholar 

  • Kuo W-T, Liu C-C, Shu C-Y (2015) The feasibility of using washed municipal solid waste incinerator bottom ash in compressed mortar paving units. J Mar Sci Technol 23(3):364–372

    Google Scholar 

  • Kuo W-T, Liu C-C, Su D-S (2013) Use of washed municipal solid waste incinerator bottom ash in pervious concrete. Cem Concr Compos 37:328–335

    Article  CAS  Google Scholar 

  • Lau PC, Teo DCL, Mannan MA (2017) Characteristics of lightweight aggregate produced from lime-treated sewage sludge and palm oil fuel ash. Constr Build Mater 152:558–567

    Article  CAS  Google Scholar 

  • Lee T-C, Wang W-J, Shih P-Y (2008) Slag–cement mortar made with cement and slag vitrified from MSWI fly-ash/scrubber-ash and glass frit. Constr Build Mater 22(9):1914–1921

    Article  Google Scholar 

  • Liao Y-C, Huang C-Y (2011) Effects of heat treatment on the physical properties of lightweight aggregate from water reservoir sediment. Ceram Int 37(8):3723–3730

    Article  CAS  Google Scholar 

  • Lin KL, Lin DF (2006) Hydration characteristics of municipal solid waste incinerator bottom ash slag as a pozzolanic material for use in cement. Cem Concr Compos 28(9):817–823

    Article  CAS  Google Scholar 

  • Liu J, Li Z, Zhang W, Jin H, Xing F, Tang L (2022) The impact of cold-bonded artificial lightweight aggregates produced by municipal solid waste incineration bottom ash (MSWIBA) replace natural aggregates on the mechanical, microscopic and environmental properties, durability of sustainable concrete. J Clean Prod 337:130479

    Article  CAS  Google Scholar 

  • Lo TY, Cui H, Memon SA, Noguchi T (2016) Manufacturing of sintered lightweight aggregate using high-carbon fly ash and its effect on the mechanical properties and microstructure of concrete. J Clean Prod 112(Part 1):753–762

    Article  Google Scholar 

  • Lu C-H, Chen J-C, Chuang K-H, Wey M-Y (2015) The different properties of lightweight aggregates with the fly ashes of fluidized-bed and mechanical incinerators. Constr Build Mater 101:380–388

    Article  Google Scholar 

  • Lynn CJ, Dhir RK, Ghataora GS (2016) Municipal incinerated bottom ash characteristics and potential for use as aggregate in concrete. Constr Build Mater 127:504–517

    Article  CAS  Google Scholar 

  • Lyra GP, dos Santos V, Santis BCD, Rivaben RR, Fischer C, de Jesus Agnolon Pallone EM, Rossignolo JA (2019) Reuse of sugarcane bagasse ash to produce a lightweight aggregate using microwave oven sintering. Constr Build Mater 222:222–228

    Article  Google Scholar 

  • Manikandan R, Ramamurthy K (2008) Effect of curing method on characteristics of cold bonded fly ash aggregates. Cem Concr Compos 30(9):848–853

    Article  CAS  Google Scholar 

  • Melotti R, Santagata E, Bassani M, Salvo M, Rizzo S (2013) A preliminary investigation into the physical and chemical properties of biomass ashes used as aggregate fillers for bituminous mixtures. Waste Manag 33(9):1906–1917

    Article  CAS  Google Scholar 

  • Memon SA, Javed U, Khushnood RA (2019) Eco-friendly utilization of corncob ash as partial replacement of sand in concrete. Constr Build Mater 195:165–177

    Article  CAS  Google Scholar 

  • Modani PO, Vyawahare MR (2013) Utilization of bagasse ash as a partial replacement of fine aggregate in concrete. Procedia Eng 51:25–29

    Article  CAS  Google Scholar 

  • Modolo RCE, Ferreira VM, Tarelho LA, Labrincha JA, Senff L, Silva L (2013) Mortar formulations with bottom ash from biomass combustion. Constr Build Mater 45:275–281

    Article  Google Scholar 

  • Moreno-Maroto JM, Camacho PN, Cotes-Palomino T, García CM, Alonso-Azcárate J (2019) Manufacturing of lightweight aggregates from biomass fly ash, beer bagasse, Zn-rich industrial sludge and clay by slow firing. J Environ Manag 246:785–795

    Article  CAS  Google Scholar 

  • MPA (2009) Mineral product association. 4

  • Müller U, Rübner K (2006) The microstructure of concrete made with municipal waste incinerator bottom ash as an aggregate component. Cem Concr Res 36(8):1434–1443

    Article  CAS  Google Scholar 

  • Muntohar AS, Rahman ME (2014) Lightweight masonry block from oil palm kernel shell. Constr Build Mater 54:477–484

    Article  Google Scholar 

  • Muthusamy K, Zulkepli NA, Mat Yahaya F (2013) Exploratory study on oil palm shell as partial sand replacement in concrete. Res J Appl Sci Eng Technol 5(7):2372–2375

    Article  Google Scholar 

  • Narattha C, Chaipanich A (2018) Phase characterizations, physical properties and strength of environment-friendly cold-bonded fly ash lightweight aggregates. J Clean Prod 171:1094–1100

    Article  CAS  Google Scholar 

  • Nikravan (2020) Study on physiochemical properties and leaching behavior of residual ash fractions from a municipal solid waste incinerator (MSWI) plant. J Environ Manag 260:110042

    Article  CAS  Google Scholar 

  • Parvati V, Prakash K (2013) Feasibility study of fly ash as a replacement for fine aggregate in concrete and its behaviour under sustained elevated temperature. Int J Sci Eng Res 4(5):87–90

    Google Scholar 

  • Patel SK, Majhi RK, Satpathy HP, Nayak AN (2019) Durability and microstructural properties of lightweight concrete manufactured with fly ash cenosphere and sintered fly ash aggregate. Constr Build Mater 226:579–590

    Article  CAS  Google Scholar 

  • Pode R (2016) Potential applications of rice husk ash waste from rice husk biomass power plant. Renew Sust Energ Rev 53:1468–1485

    Article  Google Scholar 

  • Qiao XC, Ng BR, Tyrer M, Poon CS, Cheeseman CR (2008) Production of lightweight concrete using incinerator bottom ash. Constr Build Mater 22(4):473–480

    Article  Google Scholar 

  • Quina MJ, Bordado JM, Quinta-Ferreira RM (2014) Recycling of air pollution control residues from municipal solid waste incineration into lightweight aggregates. Waste Manag 34(2):430–438

    Article  CAS  Google Scholar 

  • Rafieizonooz M, Khankhaje E, Rezania S (2022) Assessment of environmental and chemical properties of coal ashes including fly ash and bottom ash, and coal ash concrete. J Build Eng 49:104040

    Article  Google Scholar 

  • Rafieizonooz M, Mirza J, Salim MR, Hussin MW, Khankhaje E (2016) Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Constr Build Mater 116:15–24

    Article  Google Scholar 

  • Reijnders L (2005) Disposal, uses and treatments of combustion ashes: a review. Resour Conserv Recycl 43(3):313–336

    Article  Google Scholar 

  • Revilla-Cuesta V, Skaf M, Faleschini F, Manso JM, Ortega-López V (2020) Self-compacting concrete manufactured with recycled concrete aggregate: an overview. J Clean Prod 121362

  • Rivera F, Martínez P, Castro J, López M (2015) Massive volume fly-ash concrete: a more sustainable material with fly ash replacing cement and aggregates. Cem Concr Compos 63:104–112

    Article  CAS  Google Scholar 

  • Rodríguez-Álvaro R, González-Fonteboa B, Seara-Paz S, Rey-Bouzón EJ (2021) Masonry mortars, precast concrete and masonry units using coal bottom ash as a partial replacement for conventional aggregates. Constr Build Mater 283:122737

    Article  Google Scholar 

  • Roessler J, Paris J, Ferraro CC, Watts B, Townsend T (2016) Use of waste to energy bottom ash as an aggregate in portland cement concrete: Impacts of size fractionation and carbonation. Waste Biomass Valorization 7:1521–1530

    Article  CAS  Google Scholar 

  • Sabbas T, Polettini A, Pomi R, Astrup T, Hjelmar O, Mostbauer P, Cappai G (2003) Management of municipal solid waste incineration residues. Waste Manag 23(1):61–88

    Article  CAS  Google Scholar 

  • Sahoo S, Selvaraju AK (2020) Mechanical characterization of structural lightweight aggregate concrete made with sintered fly ash aggregates and synthetic fibres. Cem Concr Compos 113:103712

    Article  CAS  Google Scholar 

  • Saikia N, Mertens G, Balen KV, Elsen J, Gerven TV, Vandecasteele C (2015) Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in cement mortar. Constr Build Mater 96:76–85

    Article  Google Scholar 

  • Sales A, Lima SA (2010) Use of brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Manag 30(6):1114–1122

    Article  CAS  Google Scholar 

  • Sambyal SS, Agarwal R (2017). Burn it all. https://www.downtoearth.org.in/news/waste/burn-it-all-58827. Accessed 12 Oct 2017

  • Sata V, Tangpagasit J, Jaturapitakkul C, Chindaprasirt P (2012) Effect of w/b ratios on pozzolanic reaction of biomass ashes in portland cement matrix. Cem Concr Compos 34(1):94–100

    Article  CAS  Google Scholar 

  • Satpathy HP, Patel SK, Nayak AN (2019) Development of sustainable lightweight concrete using fly ash cenosphere and sintered fly ash aggregate. Constr Build Mater 202:636–655

    Article  Google Scholar 

  • Sebastian RM, Kumar D, Alappat BJ (2020) Demonstration of estimation of incinerability of municipal solid waste using incinerability index. Environ Dev Sustain 22:4821–4844

    Article  Google Scholar 

  • Shafigh P, Mahmud HB, Jumaat MZB, Ahmmad R, Bahri S (2014) Structural lightweight aggregate concrete using two types of waste from the palm oil industry as aggregate. J Clean Prod 80:187–196

    Article  Google Scholar 

  • Shafigh P, Nomeli MA, Johnson Alengaram U, Mahmud HB, Jumaat MZ (2016) Engineering properties of lightweight aggregate concrete containing limestone powder and high volume fly ash. J Clean Prod 135:148–157

    Article  Google Scholar 

  • Shivaprasad KN, Das BB (2018) Determination of optimized geopolymerization factors on the properties of pelletized fly ash aggregates. Constr Build Mater 163:428–437

    Article  CAS  Google Scholar 

  • Siddique R (2003) Effect of fine aggregate replacement with class f fly ash on the mechanical properties of concrete. Cem Concr Res 33(4):539–547

    Article  CAS  Google Scholar 

  • Silva RV, De Brito J, Dhir RK (2019) Use of recycled aggregates arising from construction and demolition waste in new construction applications. J Clean Prod 236:117629

    Article  Google Scholar 

  • Singh M, Siddique R (2013) Effect of coal bottom ash as partial replacement of sand on properties of concrete. Resour Conserv Recycl 72:20–32

    Article  Google Scholar 

  • Singh M, Siddique R (2014a) Compressive strength, drying shrinkage and chemical resistance of concrete incorporating coal bottom ash as partial or total replacement of sand. Constr Build Mater 68:39–48

    Article  Google Scholar 

  • Singh M, Siddique R (2014b) Strength properties and micro-structural properties of concrete containing coal bottom ash as partial replacement of fine aggregate. Constr Build Mater 50:246–256

    Article  Google Scholar 

  • Singh M, Siddique R (2015) Properties of concrete containing high volumes of coal bottom ash as fine aggregate. J Clean Prod 91:269–278

    Article  Google Scholar 

  • Singh OV, Chandel AK (2018) Sustainable Biotechnology Enzymatic Resources of Renewable Energy

  • Sua-Iam G, Makul N (2013) Utilization of limestone powder to improve the properties of self-compacting concrete incorporating high volumes of untreated rice husk ash as fine aggregate. Constr Build Mater 38:455–464

    Article  Google Scholar 

  • Sua-Iam G, Makul N (2014) Utilization of high volumes of unprocessed lignite-coal fly ash and rice husk ash in self-consolidating concrete. J Clean Prod 78:184–194

    Article  Google Scholar 

  • Tang P, Brouwers HJH (2017) Integral recycling of municipal solid waste incineration (mswi) bottom ash fines (0—2mm) and industrial powder wastes by cold-bonding pelletization. Waste Manag 62:125–138

    Article  CAS  Google Scholar 

  • Tang P, Florea MVA, Brouwers HJH (2017) Employing cold bonded pelletization to produce lightweight aggregates from incineration fine bottom ash. J Clean Prod 165:1371–1384

    Article  Google Scholar 

  • Tang P, Florea MVA, Spiesz P, Brouwers HJH (2015) Characteristics and application potential of municipal solid waste incineration (MSWI) bottom ashes from two waste-to-energy plants. Constr Build Mater 83:77–94

    Article  Google Scholar 

  • Tang P, Xuan D, Cheng HW, Poon CS, Tsang DCW (2020) Use of Co2 curing to enhance the properties of cold bonded lightweight aggregates (CBLAs) produced with concrete slurry waste (CSW) and fine incineration bottom ash (IBA). J Hazard Mater 381:120951

    Article  CAS  Google Scholar 

  • Tang P, Xuan D, Poon CS, Tsang DCW (2019) Valorization of concrete slurry waste (CSW) and fine incineration bottom ash (IBA) into cold bonded lightweight aggregates (CBLAs): Feasibility and influence of binder types. J Hazard Mater 368:689–697

    Article  CAS  Google Scholar 

  • Their JM, Özakça M (2018) Developing geopolymer concrete by using cold-bonded fly ash aggregate, nano-silica, and steel fiber. Constr Build Mater 180:12–22

    Article  CAS  Google Scholar 

  • Thy P, Jenkins BM, Grundvig S, Shiraki R, Lesher CE (2006) High temperature elemental losses and mineralogical changes in common biomass ashes. Fuel 85(5):783–795

    Article  CAS  Google Scholar 

  • Tiwari A, Singh S, Nagar R (2016) Feasibility assessment for partial replacement of fine aggregate to attain cleaner production perspective in concrete: a review. J Clean Prod 135:490–507

    Article  Google Scholar 

  • Toraldo E, Saponaro S, Careghini A, Mariani E (2013) Use of stabilized bottom ash for bound layers of road pavements. J Environ Manag 121(Supplement C):117–123

    Article  Google Scholar 

  • Torkittikul P, Nochaiya T, Wongkeo W, Chaipanich A (2017) Utilization of coal bottom ash to improve thermal insulation of construction material. J Mater Cycles Waste Manag 19:305–317

    Article  CAS  Google Scholar 

  • Tripathi N, Hills CD, Singh RS, Atkinson CJ (2019) Biomass waste utilisation in low-carbon products: harnessing a major potential resource. NPJ Clim Atmos Sci 2(1):1–10

    Article  CAS  Google Scholar 

  • Turn SQ, Kinoshita CM, Jakeway LA, Jenkins BM, Baxter LL, Ben CW, Blevins LG (2003) Fuel characteristics of processed, high-fiber sugarcane. Fuel Process Technol 81(1):35–55

    Article  CAS  Google Scholar 

  • Umamaheswaran K, Batra VS (2008) Physico-chemical characterisation of indian biomass ashes. Fuel 87(6):628–638

    Article  CAS  Google Scholar 

  • Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013a) An overview of the composition and application of biomass ash. part 1. phase–mineral and chemical composition and classification. Fuel 105:40–76

    Article  CAS  Google Scholar 

  • Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013b) An overview of the composition and application of biomass ash.: Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 105(Supplement C):19–39

    Article  CAS  Google Scholar 

  • Voshell S, Mäkelä M, Dahl O (2018) A review of biomass ash properties towards treatment and recycling. Renew Sust Energ Rev 96:479–486

    Article  CAS  Google Scholar 

  • Wei Y-L, Cheng S-H, Ko G-W (2016) Effect of waste glass addition on lightweight aggregates prepared from F-class coal fly ash. Constr Build Mater 112:773–782

    Article  CAS  Google Scholar 

  • Wilson D, Rodic-Wiersma L, Modak P, Soós R, Rogero A, Velis C, Iyer M, Simonett O (2015) Global Waste Management Outlook, United Nations Environment Programme (UNEP) and International Solid Waste Association (ISWA)

  • Wu B, Wang D, Chai X, Takahashi F, Shimaoka T (2016) Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal solid waste incinerators as cement additives. Front Environ Sci Eng 10(4):8

    Article  CAS  Google Scholar 

  • Yan K, Sun H, Gao F, Ge D, You L (2020) Assessment and mechanism analysis of municipal solid waste incineration bottom ash as aggregate in cement stabilized macadam. J Clean Prod 244:118750

    Article  CAS  Google Scholar 

  • Yang K-H, Hwang Y-H, Lee Y, Mun J-H (2019) Feasibility test and evaluation models to develop sustainable insulation concrete using foam and bottom ash aggregates. Constr Build Mater 225:620–632

    Article  Google Scholar 

  • Yao ZT, Ji XS, Sarker PK, Tang JH, Ge LQ, Xia MS, Xi YQ (2015) A comprehensive review on the applications of coal fly ash. Earth Sci Rev 141:105–121

    Article  Google Scholar 

  • Yıldırım H, Özturan T (2021) Impact resistance of concrete produced with plain and reinforced cold-bonded fly ash aggregates. J Build Eng 42:102875

    Article  Google Scholar 

  • Yliniemi J, Nugteren H, Illikainen M, Tiainen M, Weststrate R, Niinimäki J (2016) Lightweight aggregates produced by granulation of peat-wood fly ash with alkali activator. Int J Miner Process 149:42–49

    Article  CAS  Google Scholar 

  • Yoon JY, Lee JY, Kim JH (2019) Use of raw-state bottom ash for aggregates in construction materials. J Mater Cycles Waste Manag 21(4):838–849

    Article  CAS  Google Scholar 

  • Zawawi MNAA, Muthusamy K, Majeed APPA, Musa RM, Budiea AMA (2020) Mechanical properties of oil palm waste lightweight aggregate concrete with fly ash as fine aggregate replacement. J Build Eng 27:100924

    Article  Google Scholar 

  • Zhang D, Mao M, Zhang S, Yang Q (2019) Influence of stress damage and high temperature on the freeze—thaw resistance of concrete with fly ash as fine aggregate. Constr Build Mater 229:116845

    Article  Google Scholar 

  • Zhang T, Zhao Z (2014) Optimal use of MSWI bottom ash in concrete. Int J Concr Struct Mater 8(2):173–182

    Article  CAS  Google Scholar 

  • Zhou X, Zhang T, Wan S, Bo Hu, Tong J, Sun H, Chen Y, Zhang J, Hou H (2020) Immobilizatiaon of heavy metals in municipal solid waste incineration fly ash with red mud-coal gangue. J Mater Cycles Waste Manag 22(6):1953–1964

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: T. Hemalatha and Ananth Ramaswamy. Plotting: T. Hemalatha; Writing — original draft: T. Hemalatha. Review and editing: Ananth Ramaswamy.

Corresponding author

Correspondence to Hemalatha Thiyagarajan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ananth Ramaswamy contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiyagarajan, H., Ramaswamy, A. Review of alternative ash aggregates in concrete-solution towards waste management and environmental protection. Environ Sci Pollut Res 29, 62870–62886 (2022). https://doi.org/10.1007/s11356-022-21720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21720-x

Keywords

Navigation