Skip to main content

Advertisement

Log in

Nitrate adsorption onto surface-modified red mud in batch and fixed-bed column systems: equilibrium, kinetic, and thermodynamic studies

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This research aimed to develop a novel composite as a low-cost adsorbent for the removal of nitrate ion from aqueous solutions. The characterization of this composite (composition of red mud with dimethyldioctadecylammonium bromide (DDAB)) was performed by XRF, XRD, FTIR, and BET analyses. The most influential variables on nitrate adsorption, including contact time, solution acidity, adsorbent amount, and temperature were studied. The maximum amount of nitrate adsorbed onto the prepared adsorbent was obtained at pH 5.5 and contact time 30 min. The heterogeneous adsorption occurred during the uptake of nitrate. The results of kinetic study revealed that intra-particle diffusion was the major limitation for nitrate adsorption rate. The values of thermodynamic parameters illustrate the non-spontaneous, associative, and exothermic adsorption process. Increasing the temperature enhances the tendency of the process to non-spontaneously. Research on fixed-bed column has been done under different initial nitrate concentrations. The adsorption capacity of nitrate was increased with an increase in the initial concentration of nitrate. The results of column data were successfully explained using the Thomas and Yoon–Nelson models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  • Abou-Shady A, Peng C, Bi J, Xu H, Almeria OJ (2012) Recovery of Pb (II) and removal of NO3− from aqueous solutions using integrated electrodialysis, electrolysis, and adsorption process. Desalination 286:304–315

    Article  CAS  Google Scholar 

  • Adesemuyi MF, Adebayo MA, Akinola AO, Olasehinde EF, Adewole KA, Lajide L (2020) Preparation and characterisation of biochars from elephant grass and their utilisation for aqueous nitrate removal: effect of pyrolysis temperature. J Environ Chem Eng 8:104507

    Article  CAS  Google Scholar 

  • Akhurst DJ, Jones GB, Clark M, McConchie D (2006) Phosphate removal from aqueous solutions using neutralised bauxite refinery residues (Bauxsol™). Environ Chem 3:65–74

    Article  CAS  Google Scholar 

  • Alagha O, Manzar MS, Zubair M, Anil I, Mu’azu ND, Qureshi A, (2020) Magnetic Mg-Fe/LDH intercalated activated carbon composites for nitrate and phosphate removal from wastewater: insight into behavior and mechanisms. Nanomaterials 10:1361

    Article  CAS  Google Scholar 

  • Allahkarami E, Igder A, Fazlavi A, Rezai B (2017) Prediction of Co (II) and Ni (II) ions removal from wastewater using artificial neural network and multiple regression models. Physicochem Probl Miner Process 53:1105–1118

    CAS  Google Scholar 

  • Allahkarami E, Soleimanpour Moghadam N, Jamrotbe B, Azadmehr A (2021) Competitive adsorption of Ni (II) and Cu (II) ions from aqueous solution by vermiculite-alginate composite: batch and fixed-bed column studies. J Dispers Sci Technol 1:1–11

    Article  CAS  Google Scholar 

  • Allahkarami E, Rezai B (2019) Removal of cerium from different aqueous solutions using different adsorbents: a review. Process Saf Environ Prot 124:345–362

    Article  CAS  Google Scholar 

  • Almughamisi MS, Khan ZA, Alshitari W, Elwakeel KZ (2020) Recovery of chromium(VI) oxyanions from aqueous solution using Cu(OH)2 and CuO embedded chitosan adsorbents. J Polym Environ 28:47–60

    Article  CAS  Google Scholar 

  • Baei MS, Esfandian H, Nesheli AA (2016) Removal of nitrate from aqueous solutions in batch systems using activated perlite: an application of response surface methodology. Asia Pac J Chem Eng 11:437–447

    Article  CAS  Google Scholar 

  • Barber WP, Stuckey DC (2000) Nitrogen removal in a modified anaerobic baffled reactor (ABR): 1, denitrification. Water Res 34:2413–2422

    Article  CAS  Google Scholar 

  • Battas A, Gaidoumi AE, Ksakas A, Kherbeche A (2019) Adsorption study for the removal of nitrate from water using local clay. Sci World J 2019:9529618

    Article  CAS  Google Scholar 

  • Bhatnagar A, Kumar E, Sillanpää M (2010) Nitrate removal from water by nano-alumina: characterization and sorption studies. Chem Eng J 163:317–323

    Article  CAS  Google Scholar 

  • Camargo JA, Alonso Á (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849

    Article  CAS  Google Scholar 

  • Cengeloglu Y, Tor A, Ersoz M, Arslan G (2006) Removal of nitrate from aqueous solution by using red mud. Sep Purif Technol 51:374–378

    Article  CAS  Google Scholar 

  • Chatterjee S, Lee MW, Woo SH (2009) Influence of impregnation of chitosan beads with cetyl trimethyl ammonium bromide on their structure and adsorption of congo red from aqueous solutions. Chem Eng J 155:254–259

    Article  CAS  Google Scholar 

  • Chiu H-F, Tsai S-S, Yang C-Y (2007) Nitrate in drinking water and risk of death from bladder cancer: an ecological case-control study in Taiwan. J Toxicol Environ Health A 70:1000–1004

    Article  CAS  Google Scholar 

  • Deihimi N, Irannajad M, Rezai B (2018) Characterization studies of red mud modification processes as adsorbent for enhancing ferricyanide removal. J Environ Manage 206:266–275

    Article  CAS  Google Scholar 

  • Despland LM, Clark MW, Vancov T, Aragno M (2014) Nutrient removal and microbial communities’ development in a young unplanted constructed wetland using Bauxsol™ pellets to treat wastewater. Sci Total Environ 484:167–175

    Article  CAS  Google Scholar 

  • Dimas Rivera GL, Martínez Hernández A, Pérez Cabello AF, Rivas Barragán EL, Liñán Montes A, Flores Escamilla GA, Sandoval Rangel L, Suarez Vazquez SI, De Haro Del Río DA (2021) Removal of chromate anions and immobilization using surfactant-modified zeolites. J Water Process Eng 39:101717

    Article  Google Scholar 

  • El-Korashy SA, Elwakeel KZ, Abd El-Hafeiz A (2016) Fabrication of bentonite/thiourea-formaldehyde composite material for Pb (II), Mn (VII) and Cr (VI) sorption: a combined basic study and industrial application. J Clean Prod 137:40–50

    Article  CAS  Google Scholar 

  • El-Safty SA, Shenashen MA (2013) Optical mesosensor for capturing of Fe(III) and Hg(II) ions from water and physiological fluids. Sensors Actuators B Chem 183:58–70

    Article  CAS  Google Scholar 

  • El-Safty SA, Ismael M, Shahat A, Shenashen MA (2013) Mesoporous hexagonal and cubic aluminosilica adsorbents for toxic nitroanilines from water. Environ Sci Pollut Res 20:3863–3876

    Article  CAS  Google Scholar 

  • Elwakeel KZ, Al-Bogami AS (2018) Influence of Mo(VI) immobilization and temperature on As(V) sorption onto magnetic separable poly p-phenylenediamine-thiourea-formaldehyde polymer. J Hazard Mater 342:335–346

    Article  CAS  Google Scholar 

  • Elwakeel KZ, Elgarahy AM, Khan ZA, Almughamisi MS, Al-Bogami AS (2020) Perspectives regarding metal/mineral-incorporating materials for water purification: with special focus on Cr (vi) removal. Mater Adv 1:1546–1574

    Article  CAS  Google Scholar 

  • Eriksson LGT, Claesson PM, Eriksson JC, Yaminsky VV (1996) Equilibrium wetting studies of cationic surfactant adsorption on mica: 1. Mono-and bilayer adsorption of CTAB. J Colloid Interface Sci 181:476–489

    Article  Google Scholar 

  • Erol B, Erol K, Gökmeşe E (2019) The effect of the chelator characteristics on insulin adsorption in immobilized metal affinity chromatography. Process Biochem 83:104–113

    Article  CAS  Google Scholar 

  • Erol K, Bolat M, Tatar D, Nigiz C, Köse DA (2020) Synthesis, characterization and antibacterial application of silver nanoparticle embedded composite cryogels. J Mol Struct 1200:127060

    Article  CAS  Google Scholar 

  • Fernandes AN, Almeida CAP, Menezes CTB, Debacher NA, Sierra MMD (2007) Removal of methylene blue from aqueous solution by peat. J Hazard Mater 144:412–419

    Article  CAS  Google Scholar 

  • Fewtrell L (2004) Drinking-water nitrate, methemoglobinemia, and global burden of disease: a discussion. Environ Health Perspect 112:1371–1374

    Article  Google Scholar 

  • Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:1100–1107

    Google Scholar 

  • Golestanifar H, Asadi A, Alinezhad A, Haybati B, Vosoughi M (2016) Isotherm and kinetic studies on the adsorption of nitrate onto nanoalumina and iron-modified pumice. Desalin Water Treat 57:5480–5487

    Article  CAS  Google Scholar 

  • Gomaa H, Shenashen MA, Yamaguchi H, Alamoudi AS, Abdelmottaleb M, Cheira MF, Seaf El-Naser TA, El-Safty SA (2018) Highly-efficient removal of AsV, Pb2+, Fe3+, and Al3+ pollutants from water using hierarchical, microscopic TiO2 and TiOF2 adsorbents through batch and fixed-bed columnar techniques. J Clean Prod 182:910–925

    Article  CAS  Google Scholar 

  • Gomaa H, Shenashen MA, Elbaz A, Kawada S, Seaf El-Nasr TA, Cheira MF, Eid AI, El-Safty SA (2021a) Inorganic-organic mesoporous hybrid segregators for selective and sensitive extraction of precious elements from urban mining. J Colloid Interface Sci 604:61–79

    Article  CAS  Google Scholar 

  • Gomaa H, Shenashen MA, Elbaz A, Yamaguchi H, Abdelmottaleb M, El-Safty SA (2021b) Mesoscopic engineering materials for visual detection and selective removal of copper ions from drinking and waste water sources. J Hazard Mater 406:124314

    Article  CAS  Google Scholar 

  • Günay A, Arslankaya E, Tosun I (2007) Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J Hazard Mater 146:362–371

    Article  CAS  Google Scholar 

  • Hamdaoui O (2006) Dynamic sorption of methylene blue by cedar sawdust and crushed brick in fixed bed columns. J Hazard Mater 138:293–303

    Article  CAS  Google Scholar 

  • He H, Huang Y, Yan M, Xie Y, Li Y (2020) Synergistic effect of electrostatic adsorption and ion exchange for efficient removal of nitrate. Colloids Surf A Physicochem Eng Aspects 584:123973

    Article  CAS  Google Scholar 

  • Hu H-Y, Goto N, Fujie K (2001) Effect of pH on the reduction of nitrite in water by metallic iron. Water Res 35:2789–2793

    Article  CAS  Google Scholar 

  • Hu Q, Chen N, Feng C, Hu W (2015) Nitrate adsorption from aqueous solution using granular chitosan-Fe3+ complex. Appl Surf Sci 347:1–9

    Article  CAS  Google Scholar 

  • Huang W, Wang S, Zhu Z, Li L, Yao X, Rudolph V, Haghseresht F (2008) Phosphate removal from wastewater using red mud. J Hazard Mater 158:35–42

    Article  CAS  Google Scholar 

  • Igder A, Fazlavi A, Allahkarami E, Dehghanipour A (2019) Optimization of Ni(II) & Co(II) removal from wastewater and statistical studies on the results of experimental designs. Geosyst Eng 22:91–100

    Article  CAS  Google Scholar 

  • Jain S, Bansiwal A, Biniwale RB, Milmille S, Das S, Tiwari S, Siluvai Antony P (2015) Enhancing adsorption of nitrate using metal impregnated alumina. J Environ Chem Eng 3:2342–2349

    Article  CAS  Google Scholar 

  • Kireç O, Alacabey İ, Erol K, Alkan H (2021) Removal of 17β-estradiol from aqueous systems with hydrophobic microspheres. J Polym Eng 41:226–234

    Article  CAS  Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  • Li Y, Liu C, Luan Z, Peng X, Zhu C, Chen Z, Zhang Z, Fan J, Jia Z (2006) Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. J Hazard Mater 137:374–383

    Article  CAS  Google Scholar 

  • Li D, Ding Y, Li L, Chang Z, Rao Z, Lu L (2015) Removal of hexavalent chromium by using red mud activated with cetyltrimethylammonium bromide. Environ Technol 36:1084–1090

    Article  CAS  Google Scholar 

  • Lin S-H, Juang R-S (2009) Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. J Environ Manage 90:1336–1349

    Article  CAS  Google Scholar 

  • Liu A, Ming J, Ankumah RO (2005) Nitrate contamination in private wells in rural Alabama, United States. Sci Total Environ 346:112–120

    Article  CAS  Google Scholar 

  • Liu Q, Xin R, Li C, Xu C, Yang J (2013) Application of red mud as a basic catalyst for biodiesel production. J Environ Sci 25:823–829

    Article  CAS  Google Scholar 

  • Luo W, Huang Q, Zhang X, Antwi P, Mu Y, Zhang M, Xing J, Chen H, Ren S (2020) Lanthanum/Gemini surfactant-modified montmorillonite for simultaneous removal of phosphate and nitrate from aqueous solution. J Water Process Eng 33:101036

    Article  Google Scholar 

  • Namasivayam C, Sangeetha D (2005) Removal and recovery of nitrate from water by ZnCl2 activated carbon from coconut coir pith, an agricultural solid waste. Indian J Chem Technol 12:513–521

    CAS  Google Scholar 

  • Öztürk N, Bektaş TEl (2004) Nitrate removal from aqueous solution by adsorption onto various materials. J Hazard Mater 112:155–162

    Article  CAS  Google Scholar 

  • Paledi U, Allahkarami E, Rezai B, Aslani MR (2021) Selectivity index and separation efficiency prediction in industrial magnetic separation process using a hybrid neural genetic algorithm. SN Appl Sci 3:351

    Article  Google Scholar 

  • Rai S, Wasewar K, Mukhopadhyay J, Yoo CK, Uslu H (2012) Neutralization and utilization of red mud for its better waste management. World 6:5410

    Google Scholar 

  • Ren Z, Xu X, Wang X, Gao B, Yue Q, Song W, Zhang L, Wang H (2016) FTIR, Raman, and XPS analysis during phosphate, nitrate and Cr (VI) removal by amine cross-linking biosorbent. J Colloid Interface Sci 468:313–323

    Article  CAS  Google Scholar 

  • Rezai B, Allahkarami E (2021a) Chapter 2 - wastewater treatment processes—techniques, technologies, challenges faced, and alternative solutions. In: Karri RR, Ravindran G, Dehghani MH (eds) Soft Computing Techniques in Solid Waste and Wastewater Management. Elsevier, Amsterdam, pp 35–53

    Chapter  Google Scholar 

  • Rezai B, Allahkarami E (2021b) Chapter 4 - application of neural networks in wastewater degradation process for the prediction of removal efficiency of pollutants. In: Karri RR, Ravindran G, Dehghani MH (eds) Soft Computing Techniques in Solid Waste and Wastewater Management. Elsevier, Amsterdam, pp 75–93

    Chapter  Google Scholar 

  • Santona L, Castaldi P, Melis P (2006) Evaluation of the interaction mechanisms between red muds and heavy metals. J Hazard Mater 136:324–329

    Article  CAS  Google Scholar 

  • Schoeman JJ, Steyn A (2003) Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination 155:15–26

    Article  CAS  Google Scholar 

  • Sepahvand P, Abdizadeh GR, Noori S (2020) Inverse design of an irregular-shaped radiant furnace using neural network and a modified hybrid optimization algorithm. Therm Sci Eng Prog 20:100730

    Article  Google Scholar 

  • Sepehri S, Heidarpour M, Abedi-Koupai J (2014) Nitrate removal from aqueous solution using natural zeolite-supported zero-valent iron nanoparticles. Soil Water Res 9:224–232

    Article  Google Scholar 

  • Shittu I, Achazhiyath Edathil A, Alsaeedi A, Al-Asheh S, Polychronopoulou K, Banat F (2019) Development of novel surfactant functionalized porous graphitic carbon as an efficient adsorbent for the removal of methylene blue dye from aqueous solutions. J Water Process Eng 28:69–81

    Article  Google Scholar 

  • Soares MIM (2000) Biological denitrification of groundwater. In: Belkin S (ed) Environmental Challenges. Springer Netherlands, Dordrecht, pp 183–193

    Chapter  Google Scholar 

  • Song W, Gao B, Xu X, Wang F, Xue N, Sun S, Song W, Jia R (2016) Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property. J Hazard Mater 304:280–290

    Article  CAS  Google Scholar 

  • Tempkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR 12:327

    Google Scholar 

  • Ugurlu M (2009) Adsorption studies and removal of nitrate from bleached kraft mill effluent by fly-ash and sepiolite. Fresenius Environ Bull 18:2328–2335

    CAS  Google Scholar 

  • Wan D, Liu H, Liu R, Qu J, Li S, Zhang J (2012) Adsorption of nitrate and nitrite from aqueous solution onto calcined (Mg–Al) hydrotalcite of different Mg/Al ratio. Chem Eng J 195–196:241–247

    Article  CAS  Google Scholar 

  • Wang S, Ang HM, Tadé MO (2008) Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere 72:1621–1635

    Article  CAS  Google Scholar 

  • World Health Organization (2011) Guidelines for drinking-water quality. World Health Organization 216:303–304

    Google Scholar 

  • Wu F-C, Liu B-L, Wu K-T, Tseng R-L (2010) A new linear form analysis of Redlich-Peterson isotherm equation for the adsorptions of dyes. Chem Eng J 162:21–27

    Article  CAS  Google Scholar 

  • Zhan Y, Lin J, Zhu Z (2011) Removal of nitrate from aqueous solution using cetylpyridinium bromide (CPB) modified zeolite as adsorbent. J Hazard Mater 186:1972–1978

    Article  CAS  Google Scholar 

  • Zhao Y, Wang J, Luan Z, Peng X, Liang Z, Shi L (2009) Removal of phosphate from aqueous solution by red mud using a factorial design. J Hazard Mater 165:1193–1199

    Article  CAS  Google Scholar 

  • Zulfadhly Z, Mashitah M, Bhatia S (2001) Heavy metals removal in fixed-bed column by the macro fungus Pycnoporus sanguineus. Environ Pollut 112:463–470

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.F. did the batch experiments, and S.F. and F.N. interpreted the results of batch experiments. A.A. managed the project. E.A., F.N., and A.A. wrote the manuscript. E.A. did the experiments for continuous adsorption process and interpreted them. E.A, A.A. and M.S. participated in the interpretation of results, review, and editing of the paper.

Corresponding author

Correspondence to Amirreza Azadmehr.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allahkarami, E., Azadmehr, A., Noroozi, F. et al. Nitrate adsorption onto surface-modified red mud in batch and fixed-bed column systems: equilibrium, kinetic, and thermodynamic studies. Environ Sci Pollut Res 29, 48438–48452 (2022). https://doi.org/10.1007/s11356-022-19311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19311-x

Keywords

Navigation