Skip to main content
Log in

TiO2-NPs and cadmium co-exposure: in vitro assessment of genetic and genomic DNA damage on Dicentrarchus labrax embryonic cells

  • Mutagenic Factors in the Environment Impacting Human and Animal Health
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The increased titanium dioxide nanoparticles (TiO2-NPs) spread and their interaction with organic and inorganic pollutants arouses concern for the potential hazards for organisms and environment. This study tested in vitro the genotoxic effects of TiO2-NPs (1 μg/mL) and cadmium (Cd) (0.1 μg/mL) co-exposure using Dicentrarchus labrax embryonic cells (DLEC) as experimental model. The genotoxicity tests (Comet assay, Diffusion Assay and Random Amplification of Polymorphic DNA (RAPD-PCR) were conducted after 3, 24 and 48 hours of exposure to TiO2-NPs and Cd alone and in combination. The results showed that the percentage of DNA damage and apoptotic cells increases following 48 hours TiO2-NPs exposure, while DNA instability was detected for all the times tested. Cd induced genotoxic effects starting from 3 hour-exposure and for all the treatment times. Cd + TiO2-NPs co-exposure did not cause any genomic damage or apoptosis for all the exposure times. The possibility that Cd and TiO2-NPs form aggregates no longer able of penetrating the nucleus and damaging the genetic material is discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included; any additional information is available from the corresponding author on reasonable request.

References

  • Abbasi-Oshaghi E, Mirzaei F, Pourjafar M (2019) NLRP3 inflammasome, oxidative stress, and apoptosis induced in the intestine and liver of rats treated with titanium dioxide nanoparticles: in vivo and in vitro study. Int J Nanomed 14:1919–1936

    Article  CAS  Google Scholar 

  • Abdel-Latif HMR, Dawood MAO, Menanteau-Ledouble S, El-Matbouli M (2020) Environmental transformation of n-TiO2 in the aquatic systems and their ecotoxicity in bivalve mollusks: A systematic review. Ecotoxicol Environ Saf 1(200):110776

    Article  CAS  Google Scholar 

  • Ahamed M, Akhtar MJ, Alaizeri ZM, Alhadlaq HA (2020) TiO2 nanoparticles potentiated the cytotoxicity, oxidative stress and apoptosis response of cadmium in two different human cells. Environ Sci Pollut Res Int 10:10425–10435

    Article  CAS  Google Scholar 

  • Asztemborska M, Jakubiak M, Stęborowski R, Chajduk E, Bystrzejewska-Piotrowska G (2018) Titanium dioxide nanoparticle circulation in an aquatic ecosystem. Water Air Soil Pollut 229(6):208

    Article  CAS  Google Scholar 

  • Balbi T, Smerilli A, Fabbri R, Ciacci C, Montagna M, Grasselli E, Brunelli A, Pojana G, Marcomini A, Gallo G, Canesi L (2014) Co-exposure to n-TiO2 and Cd2+ results in interactive effects on biomarker responses but not in increased toxicity in the marine bivalve M. galloprovincialis. Sci Total Environ 493:355–364

    Article  CAS  Google Scholar 

  • Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F (2019) The History of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules. 25(1):112. https://doi.org/10.3390/molecules25010112

    Article  CAS  Google Scholar 

  • Bols NC, Lee LE (1991) Technology and uses of cell cultures from the tissues and organs of bony fish. Cytotechnology 6(3):163–87

    Article  CAS  Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Surampalli RY (2010) Engineered nanoparticles in wastewater and wastewater sludge–evidence and impacts. Waste Manag 30(3):504–20

    Article  CAS  Google Scholar 

  • Buonocore F, Libertini A, Prugnoli D, Mazzini M, Scapigliati G (2006) Production and characterization of a continuous embryonic cell line from sea bass (Dicentrarchus labrax L.). Mar Biotechnol 8:80-e85

    Article  CAS  Google Scholar 

  • Cantafora E, Sean Giorgi F, Frenzilli G, Scarcelli V, Busceti CL, Nigro M, Bernardeschi M, Fornai F (2014) Region-specific DNA alterations in focally induced seizures. J Neural Transm 121:1399–1403

    Article  CAS  Google Scholar 

  • Carmo TLL, Azevedo VC, de Siqueira PR, Galvão TD, Dos Santos FA, Dos Reis Martinez C B, Appoloni CR, Fernandes MN (2018) Reactive oxygen species and other biochemical and morphological biomarkers in the gills and kidneys of the Neotropical freshwater fish, Prochilodus lineatus, exposed to titanium dioxide (TiO2) nanoparticles. Environ Sci Pollut Res Int 25(23):22963–22976

    Article  CAS  Google Scholar 

  • Christensen FM, Johnston HJ, Stone V, Aitken RJ, Hankin S, Peters S, Aschberger K (2011) Nano-TiO2-feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology 5(2):110–24

    Article  CAS  Google Scholar 

  • Crandon LE, Boenisch KM, Harper BJ, Harper SL (2020) Adaptive methodology to determine hydrophobicity of nanomaterials in situ. PLoS ONE 15(6):e0233844. https://doi.org/10.1371/journal.pone.0233844

    Article  CAS  Google Scholar 

  • Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A (2016) Application of gold nanoparticles in biomedical and drug delivery Artif Cells Nanomed. Biotechnology 44(1):410–22

    CAS  Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–49

    Article  Google Scholar 

  • Della Torre C, Balbi T, Grassi G, Frenzilli G, Bernardeschi M, Smerilli A, Guidi P, Canesi L, Nigro M, Monaci F, Scarcelli V, Rocco L, Focardi S, Monopoli M, Corsi I (2015) Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. J Hazard Mater 30(297):92–100. https://doi.org/10.1016/j.jhazmat.2015.04.072

    Article  CAS  Google Scholar 

  • Frenzilli G (2020) Nanotechnology for environmental and biomedical research. Nanomaterials 8,10(11):2220

    Article  CAS  Google Scholar 

  • Frenzilli G, Nigro M, Lyons BP (2009) The comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat Res Rev 681:80–9

    Article  CAS  Google Scholar 

  • Fryer JL, Lannan GN (1994) Three decades of fish cell culture: a current listing of cell lines. J Tissue Cult Methods 16:87–94

    Article  Google Scholar 

  • Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The Effects of cadmium toxicity. Int J Environ Res Public Health. 17(11):3782. https://doi.org/10.3390/ijerph17113782

    Article  CAS  Google Scholar 

  • Gottschalk F, Sun TY, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300

    Article  CAS  Google Scholar 

  • Grande F, Tucci P (2016) Titanium dioxide nanoparticles: a risk for human health? Mini Rev Med Chem 16(9):762–9

    Article  CAS  Google Scholar 

  • Gui S, Li B, Zhao X, Sheng L, Hong J, Yu X, Sang X, Sun Q, Ze Y, Wang L, Hong F (2013) Renal injury and Nrf2 modulation in mouse kidney following chronic exposure to TiO2 nanoparticles. J Agric Food Chem 18,61(37):8959–68

    Article  CAS  Google Scholar 

  • Gyori BM, Venkatachalam G, Thiagarajan PS, Hsu D, Clement MV (2014) OpenComet: an automated tool for comet assay image analysis. Redox Biol 2:457–65

    Article  CAS  Google Scholar 

  • Hao L, Wang Z, Xing B (2009) Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). J Environ Sci (China) 21(10):1459–66

    Article  CAS  Google Scholar 

  • Hartmann NB, Von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, Baun A (2010) Algal testing of titanium dioxide nanoparticles–testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 10,269(2–3):190–7

    Article  CAS  Google Scholar 

  • Hattori K, Nakadate K, Morii A, Noguchi T, Ogasawara Y, Ishii K (2017) Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity. Biochem Biophys Res Commun 14,492(2):218–223

    Article  CAS  Google Scholar 

  • Hong F, Zhao X, Chen M, Zhou Y, Ze Y, Wang L, Wang Y, Ge Y, Zhang Q, Ye L (2016) TiO2 nanoparticles-induced apoptosis of primary cultured Sertoli cells of mice. J Biomed Mater Res A 104(1):124–35. https://doi.org/10.1002/jbm.a.35548

    Article  CAS  Google Scholar 

  • Kong F, Nie Z, Liu Z, Hou S, Ji J (2018) Developments of nano-TiO2 incorporated hydroxyapatite/PEEK composite strut for cervical reconstruction and interbody fusion after corpectomy with anterior plate fixation. J Photochem Photobiol B 187:120–125. https://doi.org/10.1016/j.jphotobiol.2018.07.016

    Article  CAS  Google Scholar 

  • Landrigan PJ, Sly JL, Ruchirawat M, Silva ER, Huo X, Diaz-Barriga F, Zar HJ, King M, Ha EH, Asante KA, Ahanchian H, Sly P (2016) Health consequences of environmental exposures: Changing global patterns of exposure and disease. Ann Glob Health 82(1):10–9

    Article  Google Scholar 

  • Li M, Pei J, Tang X, Guo X (2018) Effects of surfactants on the combined toxicity of TiO2 nanoparticles and cadmium to Escherichia coli. J Environ Sci 74:126–133

    Article  CAS  Google Scholar 

  • Liu K, Lin X, Zhao J (2013) Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors. Int J Nanomed 8:2509–20

    Google Scholar 

  • Ma T, Wang M, Gong S, Tian B (2017) Impacts of sediment organic matter content and pH on ecotoxicity of coexposure of TiO2 nanoparticles and cadmium to freshwater snails Bellamya aeruginosa. Arch Environ Contam Toxicol 72(1):153–165

    Article  CAS  Google Scholar 

  • Maitlo HA, Kim KH, Kumar V, Kim S, Park JW (2019) Nanomaterials-based treatment options for chromium in aqueous environments. Environ Int 130:104748

    Article  CAS  Google Scholar 

  • Masoud R, Bizouarn T, Trepout S, Wien F, Baciou L, Marco S, Houée Levin C (2015) Titanium dioxide nanoparticles increase superoxide anion production by acting on NADPH oxidase. PloS ONE 10(12):e0144829

    Article  CAS  Google Scholar 

  • Mohmood I, Lopes CB, Lopes I, Ahmad I, Duarte AC, Pereira E (2013) Nanoscale materials and their use in water contaminants removal-a review. Environ Sci Pollut Res Int 20(3):1239–60

    Article  CAS  Google Scholar 

  • Mottola F, Santonastaso M, Iovine C, Feola V, Pacifico S, Rocco L (2021) Adsorption of Cd to TiO2-NPs Forms Low Genotoxic aggregates in Zebrafish Cells. Cells 10(2):310 (3)

    Article  CAS  Google Scholar 

  • Mottola F, Scudiero N, Iovine C, Santonastaso M, Rocco L (2020) Protective activity of ellagic acid in counteract oxidative stress damage in zebrafish embryonic development. Ecotoxicol Environ Saf 197:110642

    Article  CAS  Google Scholar 

  • Naasz S, Altenburger R, Kühnel D (2018) Environmental mixtures of nanomaterials and chemicals: The Trojan-horse phenomenon and its relevance for ecotoxicity. Sci Total Environ 1(635):1170–1181

    Article  CAS  Google Scholar 

  • Nigro M, Bernardeschi M, Costagliola D, Della Torre C, Frenzilli G, Guidi P, Lucchesi P, Mottola F, Santonastaso M, Scarcelli V, Monaci F, Corsi I, Stingo V, Rocco L (2015) n-TiO2 and CdCl2 co-exposure to titanium dioxide nanoparticles and cadmium: Genomic, DNA and chromosomal damage evaluation in the marine fish European sea bass (Dicentrarchus labrax). Aquat Toxicol 168:72–7

    Article  CAS  Google Scholar 

  • Pathakoti K, Manubolu M, Hwang HM (2019) Effect of size and crystalline phase of TiO2 nanoparticles on photocatalytic inactivation of Escherichia coli. J Nanosci Nanotechnol. 19(12):8172–8179. https://doi.org/10.1166/jnn.2019.16757

    Article  CAS  Google Scholar 

  • Picchietti S, Bernini C, Stocchi V, Taddei AR, Meschini R, Fausto AM, Rocco L, Buonocore F, Cervia D, Scapigliati G (2017) Engineered nanoparticles of titanium dioxide (TIO2): Uptake and biological effects in a sea bass cell line. Fish Shellfish Immunol. 63:53–67

    Article  CAS  Google Scholar 

  • Rani A, Kumar A, Lal A, Pant M (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24(4):378–99

    Article  CAS  Google Scholar 

  • Rocco L, Santonastaso M, Mottola F, Costagliola D, Suero T, Pacifico S, Stingo V (2015) Genotoxicity assessment of TiO2 nanoparticles in the teleost Danio rerio. Ecotoxicol Environ Saf 113:223–30

    Article  CAS  Google Scholar 

  • Rocco L, Valentino IV, Scapigliati G, Stingo V (2014) RAPD-PCR analysis for molecular characterization and genotoxic studies of a new marine fish cell line derived from Dicentrarchus labrax. Cytotechnology 66:383–393

    Article  CAS  Google Scholar 

  • Roychoudhury S, Chakraborty S, Choudhury AP, Das A, Jha NK, Slama P, Nath M, Massanyi P, Ruokolainen J, Kesari KK (2021) Environmental factors-induced oxidative stress: Hormonal and molecular pathway disruptions in hypogonadism and Erectile Dysfunction. Antioxidants (Basel) 10(6):837 (24)

    Article  CAS  Google Scholar 

  • Saharan P, Chaudhary GR, Mehta SK, Umar A (2014) Removal of water contaminants by iron oxide nanomaterials. J Nanosci Nanotechnol 14(1):627–43

    Article  CAS  Google Scholar 

  • Santonastaso M, Mottola F, Iovine C, Cesaroni F, Colacurci N, Rocco L (2020) In vitro effects of titanium dioxide nanoparticles (TiO2NPs) on cadmium chloride (CdCl2) Genotoxicity in Human Sperm Cells. Nanomaterials 10(6):1118

    Article  CAS  Google Scholar 

  • Sharma VK, Sayes CM, Guo B, Pillai S, Parsons JG, Wang C, Yan B, Ma X (2019) Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: A review. Sci Total Environ. 25(653):1042–1051. https://doi.org/10.1016/j.scitotenv.2018.10.411

    Article  CAS  Google Scholar 

  • Singh NP (2000) A simple method for accurate estimation of apoptotic cells. Exp Cell Res 256:328–337

    Article  CAS  Google Scholar 

  • Sobhana KS, George KC, Venkat Ravi G, Ittoop G, Paulraj R (2009) Development of a cell culture system from gill explants of the grouper, Epinephelus malabaricus (Bloch and Shneider). Asian Fish Sci 22:1–6

    Google Scholar 

  • Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD (2019) ROS and the DNA damage response in cancer. Redox Biol 25:101084

    Article  CAS  Google Scholar 

  • Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol Appendix 3: Appendix 3B. https://doi.org/10.1002/0471142735.ima03bs21

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Exp Suppl 101:133–64

    Google Scholar 

  • Turkez H, Arslan ME, Ozdemir O (2017) Genotoxicity testing: progress and prospects for the next decade. Expert Opin Drug Metab Toxicol. 13(10):1089–1098. https://doi.org/10.1080/17425255.2017.1375097

    Article  CAS  Google Scholar 

  • Wang P, Xia P, Yang J, Wang Z, Peng Y, Shi W, Villeneuve DL, Yu H, Zhang X (2018) A Reduced transcriptome approach to assess environmental toxicants using zebrafish embryo test. Environ Sci Technol. 52(2):821–830. https://doi.org/10.1021/acs.est.7b04073

    Article  CAS  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ sci Technol 46(4):2242–2250

    Article  CAS  Google Scholar 

  • Whysner J, Vijayaraj Reddy M, Ross PM, Mohan M, Lax EA (2004) Genotoxicity of benzene and its metabolites. Mutat Res 566:99–130

    Article  CAS  Google Scholar 

  • Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L (2016) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res Int 23(9):8244–59

    Article  CAS  Google Scholar 

  • Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409(8):1444–52

    Article  CAS  Google Scholar 

  • Yang WW, Miao AJ, Yang LY (2012) Cd2+ Toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles. PLoS ONE 7(3):e32300

    Article  CAS  Google Scholar 

  • Ze Y, Hu R, Wang X, Sang X, Ze X, Li B, Su J, Wang Y, Guan N, Zhao X, Gui S, Zhu L, Cheng Z, Cheng J, Sheng L, Sun Q, Wang L, Hong F (2014) Neurotoxicity and gene-expressed profile in brain-injured mice caused by exposure to titanium dioxide nanoparticles. J Biomed Mater Res A 102(2):470–8

    Article  CAS  Google Scholar 

  • Zhang X, Sun H, Zhang Z, Niu Q, Chen Y (2007) Crittenden JC Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 67(1):160–6

    Article  CAS  Google Scholar 

  • Warheit DB, Donner EM (2015) Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues. Food Chem Toxicol 85:138–47

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Anna Rita Taddei, Section of Electron Microscopy, Great Equipment Center, University of Tuscia, Viterbo, Italy, and Dr. Patrizia Guidi, Department of Clinical and Experimental Medicine, University of Pisa, Italy, for their help to performing Transmission Electron Microscopy (TEM) in cell.

Funding

This research was partially supported by the Italian Ministry of Research (PRIN 2009FHHP2W)

Author information

Authors and Affiliations

Authors

Contributions

Filomena Mottola: conceptualization, writing and editing; Marianna Santonastaso, Concetta Iovine, Patrizia Guidi and Viviana Genualdo: methodology; Giada Frenzilli: formal analysis and editing; Simona Picchietti: methodology and review; Lucia Rocco: funding acquisition, project administration, review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Lucia Rocco.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent to publish

Not applicable

Competing interests

The authors declare that they have no competing interests

Additional information

Responsible Editor: Cinta Porte

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mottola, F., Santonastaso, M., Iovine, C. et al. TiO2-NPs and cadmium co-exposure: in vitro assessment of genetic and genomic DNA damage on Dicentrarchus labrax embryonic cells. Environ Sci Pollut Res 29, 62208–62218 (2022). https://doi.org/10.1007/s11356-021-17645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17645-6

Keywords

Navigation