Skip to main content

Advertisement

Log in

Application of the Paracentrotus lividus sea-urchin embryo-larval bioassay to the marine pollution biomonitoring program in the Tunisian coast

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The pollution of the marine environment by treated and untreated effluents has increased due to human activities. Monitoring the marine ecosystem is nowadays a global concern. In this work, we evaluated the effect of contaminated and uncontaminated seawater, from different Tunisian coastal areas, on the fertilization, gastrulation, and embryo-larval development events of sea urchins (Paracentrotus lividus). The station of Salakta (SA) is considered as a control station, while the stations of Hamdoun Wadi (HW), Port of Monastir (PM), Karaia Monastir (KM), Teboulba (TE), and Khniss Lagoon (KL) are considered to be contaminated stations. The analysis of seawater physicochemical characteristics showed that levels of the total suspended matter (TSM), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total organic carbon (TOC), and nitrate (NO3−) were lower in the seawater of the reference site Salakta (SA) when compared to those of the contaminated seawater sites. In addition, a very strong variation in the levels of trace metals in seawaters sampled in the studied sites was noted. In fact, the highest concentrations of Pb and Cu were observed in Hamdoun Wadi (HW), port of Monastir (PM), and Karaia Monastir (KM), while the highest concentration of Zn was noted in the Teboulba lagoon (TE) and Khniss (LK). Alterations in physicochemical characteristics as well as elevated trace metal levels in the studied seawater samples were correlated with reduced fertility rate, gastrulation rate, and the frequency of normal sea urchin larvae. The total absence of normal sea urchin pluteus larvae in the sea waters of heavily polluted sites proves the great sensitivity of the larval frequency to mixed pollution. This work recommends the utility of urchin fertilization and gastrulation rates and normal pluteus larval frequencies as useful bioassays to monitor the exposure of marine ecosystems to mixed pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used during the current study are available from the corresponding author on reasonable request.

References

  • Afsa S, Hamden K, Martin PAL, Mansour HB (2020) Occurrence of 40 pharmaceutically active compounds in hospital and urban wastewaters and their contribution to Mahdia coastal seawater contamination. Environ Sci Pollut Res 27(2):1941–1955. https://doi.org/10.1007/s11356-019-06866-5

    Article  CAS  Google Scholar 

  • Amaroli A, Grazia M, Falugi C, Giovanna M (2013) Effects of the neurotoxic thiophosphate pesticide chlorpyrifos on differentiating alternative models. Chemosphere. 90:2115–2122. https://doi.org/10.1016/j.chemosphere.2012.11.005

    Article  CAS  Google Scholar 

  • Amor RB, Jerbi H, Abidi M, Gueddari M (2020) Assessment of trace metal contamination, total organic carbon and nutrient accumulation in surface sediments of Monastir Bay (Eastern Tunisia, Mediterranean Sea). Reg Stud Mar Sci 34:101089. https://doi.org/10.1016/j.rsma.2020.101089

    Article  Google Scholar 

  • Amri S, Samar MF, Sellem F, Ouali K (2017) Seasonal antioxidant responses in the sea urchin Paracentrotus lividus (Lamarck 1816) used as a bioindicator of the environmental contamination in the South-East Mediterranean. Mar Pollut Bull 122:392–402. https://doi.org/10.1016/j.marpolbul.2017.06.079

    Article  CAS  Google Scholar 

  • ASTM (1995) Standard guide for conducting static acute toxicity tests with echinoid embryos. American Society for Testing and Materials E1563-95:962–980

    Google Scholar 

  • Aydin Urucu O, Aydin A (2015) Coprecipitation for the determination of copper (II), zinc (II), and lead (II) in seawater by flame atomic absorption spectrometry. Anal Lett 48(11):1767–1776. https://doi.org/10.1080/00032719.2014.999275

    Article  CAS  Google Scholar 

  • Beiras R, Fernández N, Bellas J, Besada V, González-Quijano A, Nunes T (2003) Integrative assessment of marine pollution in Galician estuaries using sediment chemistry, mussel bioaccumulation, and embryo-larval toxicity bioassays. Chemosphere 52(7):1209–1224. https://doi.org/10.1016/s0045-6535(03)00364-3

    Article  CAS  Google Scholar 

  • Beiras R, Duran I, Bellas J, Sánchez-Marín P (2012) Biological effects of contaminants: Paracentrotus lividus sea urchin embryo test with marine sediment elutriates. ICES Techniques in Marine Environmental Sciences No 51:13

    Google Scholar 

  • Bellas J, Beiras R, O-Balsa JCM, Fernandez N (2005) Toxicity of organic compounds to marine invertebrate embryos and larvae: a comparison between the sea urchin embryogenesis bioassay and alternative test species. Ecotoxicology 14:337–353

    Article  CAS  Google Scholar 

  • Bellas J, Saco-Álvarez L, Nieto O, Beiras R (2008) Ecotoxicological evaluation of polycyclic aromatic hydrocarbons using marine invertebrate embryo-larval bioassays. Mar Pollut Bull 57:493–502. https://doi.org/10.1016/j.marpolbul.2008.02.039

    Article  CAS  Google Scholar 

  • Bonanno G, Orlando-Bonaca M (2018) Perspectives on using marine species as bioindicators of plastic pollution. Mar Pollut Bull 137:209–221. https://doi.org/10.1016/j.marpolbul.2018.10.018

    Article  CAS  Google Scholar 

  • Bonaventura R, Zito F, Costa C, Giarrusso S, Celi F, Matranga V (2011) Stress response gene activation protects sea urchin embryos exposed to X-rays. Cell Stress Chaperones 16:681–687. https://doi.org/10.1007/s12192-011-0277-3

    Article  CAS  Google Scholar 

  • Bonaventura R, Zito F, Chiaramonte M, Costa C, Russo R (2018) Nickel toxicity in P. lividus embryos: dose dependent effects and gene expression analysis. Mar Environ Res 139:113–121. https://doi.org/10.1016/j.marenvres.2018.05.002

    Article  CAS  Google Scholar 

  • Bošnjak I, Borra M, Iamunno F, Benvenuto G, Ujević I, Bušelić I, Roje-Busatto R, Mladineo I (2014) Effect of bisphenol A on P-glycoprotein-mediated efflux and ultrastructure of the sea urchin embryo. Aquat Toxicol 156:21–29. https://doi.org/10.1016/j.aquatox.2014.07.018

    Article  CAS  Google Scholar 

  • Bougis P (1959) Sur l’effet biologique du cuivre en eau de mer. C.R.A cad. Sci. Paris 249(12):326–328

    Google Scholar 

  • Carballeira C, Ramos-Gómez J, Martín-Díaz L, DelValls TA (2012a) Identification of specific malformations of sea urchin larvae for toxicity assessment: application to marine pisciculture effluents. Mar Environ Res 77:12–22. https://doi.org/10.1016/j.marenvres.2012.01.001

    Article  CAS  Google Scholar 

  • Carballeira C, De Orte M, Viana R, DelValls IG, Carballeira TA (2012b) Assessing the toxicity of chemical compounds associated with land-based marine fish farms: the sea urchin embryo bioassay with Paracentrotus lividus and Arabica lixula. Arch Environ ContamToxicol 63:249–261

    Article  CAS  Google Scholar 

  • Casas, S. 2005 Modélisation de la bioaccumulation de métaux traces (Hg, Cd, Pb, Cu et Zn) chez la moule, Mytilus galloprovincialis, en milieu méditerranéen. Doctorat de l’université du Sud Toulon Var. Spécialité: Océanologie biologique, Environnement marin, France pp. 363

  • Damak M, Frontalini F, Elleuch B, Kallel M (2019a) Benthic foraminiferal assemblages as pollution proxies along the coastal fringe of the Monastir Bay (Tunisia). J Afr Earth Sci 150:379–388. https://doi.org/10.1016/j.jafrearsci.2018.11.013

    Article  CAS  Google Scholar 

  • Damak M, Fourati R, Ellech B, Kallel M (2019b) Assessment of organic and metallic contamination in the surface sediment of Monastir Bay (Eastern Tunisia): Spatial distribution, potential sources, and ecological risk assessment. Mar Pollut Bull 149:110500. https://doi.org/10.1016/j.marpolbul.2019.110500

    Article  CAS  Google Scholar 

  • Dorey N, Martin S, Oberhänsli F, Teyssié JL, Jeffree R, Lacoue-Labarthe T (2018) Ocean acidification modulates the incorporation of radio-labeled heavy metals in the larvae of the Mediterranean sea urchin Paracentrotus lividus. J Environ Radioact 190:20–30. https://doi.org/10.1016/J.JENVRAD.2018.04.017

    Article  Google Scholar 

  • Fernández N, Beiras R (2001) Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology. 10:263–271. https://doi.org/10.1023/A:1016703116830

    Article  Google Scholar 

  • Gambardella C, Aluigia MG, Ferrandoa S, Gallusa L, Ramoinoa P, Gattib AM, Rottignia M, Falugi C (2013) Developmental abnormalities and changes in cholinesterase activity in sea urchin embryos and larvae from sperm exposed to engineered nanoparticles. Aquat Toxicol 130–131:77–85

    Article  Google Scholar 

  • Gharred T, Kawther Ezzine I, Naija A, Bouali RR, Jebali J (2015) Assessment of toxic interactions between deltamethrin and copper on the fertility and developmental events in the Mediterranean sea urchin, Paracentrotus lividus. Environ Monit Assess 187(4):193. https://doi.org/10.1007/s10661-015-4407-8

    Article  CAS  Google Scholar 

  • Gharred T, Jebali J, Belgacem M, Mannai R, Achour S (2016) Assessment of the individual and mixture toxicity of cadmium, copper, and oxytetracycline, on the embryo-larval development of the sea urchin Paracentrotus lividus. Environ Sci Pollut Res 23:18064–18072. https://doi.org/10.1007/s11356-016-6988-3

    Article  CAS  Google Scholar 

  • Gharred T, Helaoui A, Mannai R, Jebali J (2019) Effect of multiple pollution on the cholinesterase activity, morphometry and reproduction performance of Patella caerulea collected from eastern Tunisian coasts. Cah Biol Mar 60:11–20. https://doi.org/10.21411/CBM.A.132317A6

    Article  Google Scholar 

  • Gharred T, Mannai R, Belgacem M, Jebali J (2020) Incidence of morphometry variation, growth alteration, and reproduction performance of the annular sea bream (Diplodus annularis) as effective tools to assess marine contamination: how useful is a multi-biotimarkers approach? Environ Sci Pollut Res 27(4):4075–4088. https://doi.org/10.1007/s11356-019-07014-9

    Article  Google Scholar 

  • Guendouzi Y, Boulahdid M, Boudjenoun M, Mezali K, Soualili DL (2017) Seasonal variation in bioavailability of trace metals in the echinoid Paracentrotus lividus (Lamarck, 1816) from Algerian coastal waters: effect of physiological indices. Reg Stud Mar Sci 14:112–117. https://doi.org/10.1016/j.rsma.2017.05.010

    Article  Google Scholar 

  • Hernández MA, Portillo R, Salgado MA, Hernández GI, Zagoya J, De los Ángeles Velasco M, Rivera A, Romero O (2020) Textural and morphological analysis of the Popocatépetl volcano ashes. Mex J Mat Sci Eng 7:1–8

    Google Scholar 

  • His E, Seaman MNL, Beiras R (1997) A simplification of the bivalve embryogenesis and larval development bioassay method for water quality assessment. Water Res 31(2):351–355. https://doi.org/10.1016/s0043-1354(96)00244-8

    Article  CAS  Google Scholar 

  • Jebali J, Ben-Khedher S, Ghedira J, Kamel N, Boussetta H (2011) Integrated assessment of biochemical biomarker responses in Mediterranean crab (Carcinus maenas) collected from Monastir Bay (Tunisia). J Environ Scie, (2011) 23(10):1714–1720. https://doi.org/10.1016/S1001-0742(10)60617-1

    Article  CAS  Google Scholar 

  • Jebali J, Banni M, Boussetta H (2012) Biochemical biomarkers in aquatic ecotoxicology: fundamental mechanisms, application and perspectives. In: Daniel JA (ed) Advance in environmental research, vol 23–323. Nova Science Publisher, New York, pp 143–168

    Google Scholar 

  • Jebali J, Sabbagh M, Banni M, Kamel N, Ben-Khedher S, M’hamdi N, Boussetta H (2013) Multiple biomarkers of pollution effects in Solea solea fish on the Tunisia coastline. Environmental Science and Pollution Research 4 20(6):3812–3821. https://doi.org/10.1007/s11356-012-1321-2

    Article  CAS  Google Scholar 

  • Khiari N, Charef A, Atoui A, Azouzi R, Khalil N, Khadhar S (2021) Southern Mediterranean coast pollution: long-term assessment and evolution of PAH pollutants in Monastir Bay (Tunisia). Mar Pollut Bull 167:112268. https://doi.org/10.1016/j.marpolbul.2021.112268

    Article  CAS  Google Scholar 

  • Kobayashi N (1971) Fertilized sea urchin eggs as an indicatory material for marine pollution bioassay, preliminary experiments. Publ Seto Mar Biol Lab 18(6):379–406

    Article  Google Scholar 

  • Kobayashi N, Okamura H (2005) Effects of heavy metals on sea urchin embryo development. Part 2. Interactive toxic effects of heavy metals in synthetic mine effluents. Chemosphere. 61:1198–1203. https://doi.org/10.1016/j.chemosphere.2005.02.071

    Article  CAS  Google Scholar 

  • Kobayashi N, Naidenko TKH, Vashchenko MA (1994) Standardization of a bioassay using sea-urchin embryos. Russ J Mar Biol 20(6):351–357

    Google Scholar 

  • Lallier R (1965) Effets du 5-fluoro-uracile et de la 6-méthylpurine sur le développement de l’œuf de l’oursin Paracentrotus lividus. Development. 14:181–189. https://doi.org/10.1242/dev.14.2.181

    Article  CAS  Google Scholar 

  • Levert A, Alvariño R, Bornancin L, Mansour EA, Burja AM, Genevière AM, Bonnard I, Alonso E, Botana L, Banaigs B (2018) Structures and activities of Tiahuramides A-C, cyclic depsipeptides from a Tahitian collection of the marine Cyanobacterium Lyngbya majuscule. J Nat Prod 81:1301–1310. https://doi.org/10.1021/acs.jnatprod.7b00751

    Article  CAS  Google Scholar 

  • Lewis C, Ford AT (2012) Infertility in male aquatic invertebrates: a review. Aquat Toxicol 120:79–89. https://doi.org/10.1016/j.aquatox.2012.05.002

    Article  CAS  Google Scholar 

  • Limatola N, Chun JT, Santella L (2020) Effects of salinity and pH of seawater on the reproduction of the sea urchin Paracentrotus lividus. Biol Bull 239(1):13–23. https://doi.org/10.1086/710126

    Article  CAS  Google Scholar 

  • Manzo S, Miglietta ML, Rametta G, Buono S, Di Francia G (2013) Embryotoxicity and spermiotoxicity of nanosized ZnO for Mediterranean sea urchin Paracentrotus lividus. J Hazard Mater 254:1–7. https://doi.org/10.1016/j.jhazmat.2013.03.027

    Article  CAS  Google Scholar 

  • Martin S, Richier S, Pedrotti M, Dupont S, Castejon C, Gerakis Y, Kerros M, Oberhänsli F, Teyssié J, Jeffree R, Gattuso JP (2011) Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. J Exp Biol 214:1357–1368. https://doi.org/10.1242/jeb.051169

    Article  CAS  Google Scholar 

  • Martino C, Costa CR, Maria C, Koop D, Scudiero R, Byrne M (2018) Gadolinium perturbs the expression of skeletogenic genes, calcium uptake, and larval development in phylogenetically distant sea urchin species. Aquat Toxicol 194:57–66. https://doi.org/10.1016/J.AQUATOX.2017.11.004

    Article  CAS  Google Scholar 

  • Matranga V, Zito F, Costa C, Bonaventura R, Giarrusso S, Celi F (2010) Embryonic development and skeletogenic gene expression affected by X-rays in the Mediterranean sea urchin Paracentrotus lividus. Ecotoxicology. 19:530–537. https://doi.org/10.1007/s10646-009-0444-9

    Article  CAS  Google Scholar 

  • McGibbon S, Moldan AGS (1986) Routine toxicity testing of toxicants using a sea urchin gamete bioassay. Mar Pollut Bull 17(2):68–72

    Article  CAS  Google Scholar 

  • Meriç S, De Nicola E, Iaccarino M, Gallo M, Di Gennaro A, Morrone G, Warnau M, Belgiorna V, Pagano G (2005) Toxicity of leather tanning wastewater effluents in sea urchin early development and in marine microalgae. Chemosphere 61(2):208–217. https://doi.org/10.1016/j.chemosphere.2005.02.037

    Article  CAS  Google Scholar 

  • Methneni N, González JAM, Van Loco J, Anthonissen R, de Maele JV, Verschaeve L, Fernandez-Serrano M, Mansour HB (2021) Ecotoxicity profile of heavily contaminated surface water of two rivers in Tunisia. Environ Toxicol Pharmacol 82:103550. https://doi.org/10.1016/j.etap.2020.103550

    Article  CAS  Google Scholar 

  • Milito A, Murano C, Castellano I, Romano G, Palumbo A (2020) Antioxidant and immune response of the sea urchin Paracentrotus lividus to different re-suspension patterns of highly polluted marine sediments. Mar Environ Res 160:104978. https://doi.org/10.1016/j.marenvres.2020.104978

    Article  CAS  Google Scholar 

  • Nacci D, Jackim E, Walsh R (1986) Comparative evaluation of three rapid marine toxicity tests: sea urchin early embryo growth test, sea urchin sperm cell toxicity test and microtox. Environ Toxicol Chem 5:521–525

    Article  CAS  Google Scholar 

  • Nouira T, Risso C, Chouba L, Budzinski H, Boussetta H (2013) Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in surface sediments from Monastir Bay (Tunisia, Central Mediterranean): occurrence, distribution and seasonal variations. Chemosphere 93(3):487–493. https://doi.org/10.1016/j.chemosphere.2013.06.017

    Article  CAS  Google Scholar 

  • Parra Luna M, Martín Pozo L, Hidalgo F, Zafra Gómez A (2020) Common sea urchin (Paracentrotus lividus) and sea cucumber of the genus Holothuria as bioindicators of pollution in the study of chemical contaminants in aquatic media. A revision Ecol Indic 113:106185. https://doi.org/10.1016/j.ecolind.2020.106185

    Article  CAS  Google Scholar 

  • Pesando D, Huitorelb P, Dolcinia V, Angelinic C, Guidettid P, Falugic C (2003) Biological targets of neurotoxic pesticides analysed by alteration of developmental events in the Mediterranean Sea urchin, Paracentrotus lividus. Mar Environ Res 55:39–57

    Article  CAS  Google Scholar 

  • Pesando D, Robert S, Huitorel P, Gutknecht E, Pereira L, Girard JP, Ciapa B (2004) Effects of methoxychlor, dieldrin and lindane on sea urchin fertilization and early development. Aquat Toxicol 66:225–239

    Article  CAS  Google Scholar 

  • Pétinay S, Chataigner C, Basuyaux O (2009) Standardisation du développement larvaire de l’oursin, Paracentrotus lividus, pour l’évaluation de la qualité d’une eau de mer. C R Biol 332:1104–1114. https://doi.org/10.1016/j.crvi.2009.08.002

    Article  Google Scholar 

  • Rocha AC, Camacho C, Eljarrat E, Peris A, Aminot Y, Readman JW, Boti V, Nannou C, Marques A, Nunes ML, Almeida CM (2018) Bioaccumulation of persistent and emerging pollutants in wild sea urchin Paracentrotus lividus. Environ Res 161:354–363. https://doi.org/10.1016/j.envres.2017.11.029

    Article  CAS  Google Scholar 

  • Rodier J, Geoffray C, Rodi L (1984) L’analyse de l’eau: eaux naturelles, eaux résiduaires, eau de mer: chimie, physico-chimie, bactériologie, biologie (p. 1365). Dunod, Paris

    Google Scholar 

  • Ruocco N, Bertocci I, Munari M, Musco L, Caraniello D, Danovaro R, Zupo V, Costantini M (2020) Morphological and molecular responses of the sea urchin Paracentrotus lividus to highly contaminated marine sediments: the case study of Bagnoli-Coroglio brownfield (Mediterranean Sea). Mar Environ Res 104865:104865. https://doi.org/10.1016/j.marenvres.2019.104865

    Article  CAS  Google Scholar 

  • Saco-Álvarez L, Durán I, Ignacio Lorenzo J, Beiras R (2010) Methodological basis for the optimization of a marine sea-urchin embryo test (SET) for the ecological assessment of coastal water quality. Ecotoxicol Environ Saf 73(4):491–499. https://doi.org/10.1016/j.ecoenv.2010.01.018

    Article  CAS  Google Scholar 

  • Tato T, Salgueiro-González N, León VM, González S, Beiras R (2018) Ecotoxicological evaluation of the risk posed by bisphenol A, triclosan, and 4-nonylphenol in coastal waters using early life stages of marine organisms (Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Acartia clausi). Environ Pollut 232:173–182. https://doi.org/10.1016/j.envpol.2017.09.031

    Article  CAS  Google Scholar 

  • Ternengo S, Marengo M, El Idrissi O, Yepka J, Pasqualini V, Gobert S (2018) Spatial variations in trace element concentrations of the sea urchin, Para-centrotus lividus, a first reference study in the Mediterranean Sea. Mar PollutBull 129:293e298–293e298. https://doi.org/10.1016/j.marpolbul.2018.02.049

    Article  CAS  Google Scholar 

  • Vallaeys T, Klink SP, Fleouter E, Le Moing B, Lignot JH, Smith AJ (2017) Bioindicators of marine contaminations at the frontier of environmental monitoring and environmental genomics. Adv Biotechnol Microbiol 4:555629. https://doi.org/10.19080/AIBM.2017.04.555629

    Article  Google Scholar 

  • Van Dam JW, Trenfield MA, Harries SJ, Streten C, Harford AJ, Parry D, van Dam RA (2016) A novel bioassay using the barnacle Amphibalanus amphitrite to evaluate chronic effects of aluminium, gallium and molybdenum in tropical marine receiving environments. Mar Pollut Bull 112(1-2):427–435. https://doi.org/10.1016/j.marpolbul.2016.07.015

    Article  CAS  Google Scholar 

  • Warnau M, Dutrieux S, Ledent G, Rodriguez Y, Baena AM, Dúbois P (2006) Heavy metals in sea cucumber Holothuria tubulosa (Echinodermata) from the Mediterranean Posidonia oceanica ecosystem: body compartment, seasonal, geographical and bathymetric variations. Environ Bioindic 1:268–285. https://doi.org/10.1080/15555270601034388

    Article  CAS  Google Scholar 

  • Zúñiga M, Roa R, Larrain A (1995) Sperm cell bioassays with the sea urchin Arbacia spatuligera on samples from two polluted Chilean coastal sites. Mar Pollut Bull 30(5):313–319. https://doi.org/10.1016/0025-326X(94)00179-D

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Pr. Hedi Ben Mansour, head of the Research Unit for Environmental Analysis and Processes (UR17ES32) (APAE) of the Higher Institute of Applied Sciences and Technology of Mahdia (ISSATM), for their help in the seawaters physicochemical parameters and trace metals analyses.

Funding

This work was supported by a fund from the Ministry of Scientific Research and Technology, University of Monastir, Tunisia (Research Laboratory Bioresources: Integrative Biology and Valorization, Higher Institute of Biotechnology of Monastir, Tunisia).

Author information

Authors and Affiliations

Authors

Contributions

CG: Methodology, Investigation, Formal analysis, Writing—original draft; MJ: Conceptualization, Methodology, Investigation; Formal analysis; ZB: Conceptualization, Methodology, Investigation; HG: Methodology, Investigation; JJ: Conceptualization, Methodology, Investigation; GT: Conceptualization, Methodology, Investigation. All authors participated in the final writing—review and editing of the manuscript.

Corresponding author

Correspondence to Chayma Gharred.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Cinta Porte

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharred, ., Jenzri, M., Bouraoui, Z. et al. Application of the Paracentrotus lividus sea-urchin embryo-larval bioassay to the marine pollution biomonitoring program in the Tunisian coast. Environ Sci Pollut Res 29, 5787–5797 (2022). https://doi.org/10.1007/s11356-021-16101-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16101-9

Keywords

Navigation