Skip to main content

Advertisement

Log in

Waste converting through by-product synergy: an insight from three-echelon supply chain

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

By-product synergy (BPS) is an innovative method to convert waste into valuable by-products effectively. Based on a three-echelon supply chain composed of an upstream manufacturer, a processing plant with limited processing capacity, and a downstream manufacturer, this study derives the production quantity and waste disposal decisions of the upstream and downstream manufacturers as well as the optimal transfer price decision of the processing plant. Moreover, we assess the environmental performance of BPS. Analytical results suggest that the upstream manufacturer’s production quantity and waste disposal decisions and the processing plant’s transfer price decision are threshold dependent on the processing plant’s capacity, whereas the downstream manufacturer’s production quantity decision is threshold dependent on the processing plant’s capacity and price of raw materials. BPS is beneficial for all members of the supply chain to increase profit. The production promotion and cost-saving effects ensure that the supply chain members maximize their profit. However, BPS does not always have a positive effect on the environment; when the processing plant’s capacity and price of raw materials are below the threshold, implementing BPS results in a win-win situation of economic and environmental benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  • Afflerbach P, Fridgen G, Keller R, Rathgeber AW, Strobel F (2014) The by-product effect on metal markets – New insights to the price behavior of minor metals. Resour Policy 42:35–44

    Article  Google Scholar 

  • Aigbedo H (2019) Assessment of the effect of location and financial variables on environmental management performance for industrial goods supply chains. J Environ Manage 236:254–268

    Article  Google Scholar 

  • Boute RN, Disney SM, Lambrecht MR, Van Houdt B (2009) Designing replenishment rules in a two-echelon supply chain with a flexible or an inflexible capacity strategy. Int J Prod Econ 119:187–198

    Article  Google Scholar 

  • Cachon GP (2014) Retail Store Density and the Cost of Greenhouse Gas Emissions. Manage Sci 60:1907–1925

    Article  Google Scholar 

  • Cannella S, Dominguez R, Ponte B, Framinan JM (2018) Capacity restrictions and supply chain performance: Modelling and analysing load-dependent lead times. Int J Prod Econ 204:264–277

    Article  Google Scholar 

  • Cao KY, Xu XP, Wu Q, Zhang QP (2017) Optimal production and carbon emission reduction level under cap-and-trade and low carbon subsidy policies. J Clean Prod 167:505–513

    Article  Google Scholar 

  • Cho SH, Tang CS (2014) Technical Note-Capacity Allocation Under Retail Competition: Uniform and Competitive Allocations. Oper Res 62:72–80

    Article  Google Scholar 

  • Choi CH, Kim S-P, Lee S, Zhao F (2020) Game theoretic production decisions of by-product materials critical for clean energy technologies - Indium as a case study. Energy 203:117768

    Article  CAS  Google Scholar 

  • Davidson MD, Boon BH, van Swigchem J (2005) Monetary valuation of emissions in implementing environmental policy - The reduction cost approach based upon policy targets. J Ind Ecol 9:145–154

    Article  CAS  Google Scholar 

  • Erkoc M, Wu SD (2005) Managing high-tech capacity expansion via reservation contracts. Prod Oper Manag 14:232–251

    Article  Google Scholar 

  • Fraccascia L (2019) The impact of technical and economic disruptions in industrial symbiosis relationships: An enterprise input-output approach. Int J Prod Econ 213:161–174

    Article  Google Scholar 

  • Fraccascia L, Yazan DM, Albino V, Zijm H (2020) The role of redundancy in industrial symbiotic business development: A theoretical framework explored by agent-based simulation. Int J Prod Econ 221:107471

    Article  Google Scholar 

  • Fransoo JC, Lee CY (2013) The Critical Role of Ocean Container Transport in Global Supply Chain Performance. Prod Oper Manag 22:253–268

    Article  Google Scholar 

  • Feng W, Ji G, Pardalos PM (2019) Effects of government regulations on Manufacturer’s behaviors under carbon emission reduction. Environ Sci Pollut Res 26:17918–17926

    Article  CAS  Google Scholar 

  • Huaxin, C. (2013). Huaxin cement’s CSR report in 2016. Available at http://www. huaxincem. com/ community-responsibility-rep/2017/0727/2703.html (accessed date June 29, 2021).

  • He M, Jin YL, Zeng HX, Cao J (2020) Pricing decisions about waste recycling from the perspective of industrial symbiosis in an industrial park: A game model and its application. J Clean Prod 251:119417

    Article  Google Scholar 

  • Herczeg G, Akkerman R, Hauschild MZ (2018) Supply chain collaboration in industrial symbiosis networks. J Clean Prod 171:1058–1067

    Article  Google Scholar 

  • Jensen PD, Basson L, Hellawell EE, Bailey MR, Leach M (2011) Quantifying ‘geographic proximity’: Experiences from the United Kingdom’s National Industrial Symbiosis Programme. Resour Conserv Recycl 55:703–712

    Article  Google Scholar 

  • Jian M, He H, Ma C, Wu Y, Yang H (2019) Reducing greenhouse gas emissions: a duopoly market pricing competition and cooperation under the carbon emissions cap. Environ Sci Pollut Res 26:16847–16854

    Article  Google Scholar 

  • Kamarehie B, Jafari A, Ghaderpoori M, Azimi F, Faridan M, Sharafi K, Ahmadi F, Karami MA (2020) Qualitative and quantitative analysis of municipal solid waste in Iran for implementation of best waste management practice: a systematic review and meta-analysis. Environ Sci Pollut Res 27:37514–37526

    Article  Google Scholar 

  • Krishnan V, Zhu W (2006) Designing a Family of Development-Intensive Products. Manage Sci 52:813–825

    Article  Google Scholar 

  • Lee D (2012) Turning Waste into By-Product. Manuf Serv Oper Manag 14:115–127

    Article  Google Scholar 

  • Lee D, Tongarlak MH (2017) Converting retail food waste into by-product. Eur J Oper Res 257:944–956

    Article  Google Scholar 

  • Lee S, Park SJ (2020) Who should lead carbon emissions reductions? Upstream vs. downstream firms. Int J Prod Econ 230:107790

    Article  Google Scholar 

  • Li X, Xiao R (2017) Analyzing network topological characteristics of eco-industrial parks from the perspective of resilience: A case study. Ecol Indic 74:403–413

    Article  Google Scholar 

  • Liu C, Côté RP, Zhang K (2015) Implementing a three-level approach in industrial symbiosis. J Clean Prod 87:318–327

    Article  Google Scholar 

  • Liu C, Zhang Q, Wang H (2020) Cost-benefit analysis of waste photovoltaic module recycling in China. Waste Manage 118:491–500

    Article  Google Scholar 

  • Liu J, Nie J, Yuan H (2019) To expand or not to expand: A strategic analysis of the recycler's waste treatment capacity. Comput Ind Eng 130:731–744

    Article  Google Scholar 

  • Mathivathanan D, Kannan D, Haq AN (2018) Sustainable supply chain management practices in Indian automotive industry: A multi-stakeholder view. Resour Conserv Recycl 128:284–305

    Article  Google Scholar 

  • MEE (2020) China Ecological Environment Report (2019). Available at https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202006/P020200602509464172096.pdf (Accessed date July 27, 2020)

  • MIIT (2016) Green Industrial Development Plan (2016-2020). Available at http://www.miit.gov.cn/n1146295/n1652858/n1652930/n3757016/c5143553/content.html (Accessed date May 20, 2020)

  • Morales EM, Diemer A, Cervantes G, Carrillo-González G (2019) “By-product synergy” changes in the industrial symbiosis dynamics at the Altamira-Tampico industrial corridor: 20 Years of industrial ecology in Mexico. Resour Conserv Recycl 140:235–245

    Article  Google Scholar 

  • Neto R, Gastineau P, Cazacliu BG, Le Guen L, Paranhos RS, Petter CO (2017) An economic analysis of the processing technologies in CDW recycling platforms. Waste Manage 60:277–289

    Article  Google Scholar 

  • Qi AY, Ahn HS, Sinha A (2015) Investing in a Shared Supplier in a Competitive Market: Stochastic Capacity Case. Prod Oper Manag 24:1537–1551

    Article  Google Scholar 

  • Raz G, Druehl CT, Blass V (2013) Design for the Environment: Life-Cycle Approach Using a Newsvendor Model. Prod Oper Manag 22:940–957

    Article  Google Scholar 

  • Sgarbossa F, Russo I (2017) A proactive model in sustainable food supply chain: Insight from a case study. Int J Prod Econ 183:596–606

    Article  Google Scholar 

  • Shi H, Chertow M, Song Y (2010) Developing country experience with eco-industrial parks: a case study of the Tianjin Economic-Technological Development Area in China. J Clean Prod 18:191–199

    Article  Google Scholar 

  • Shukla V, Naim M (2017) Detecting disturbances in supply chains: the case of capacity constraints. Int J Logist Manag 28:398–416

    Article  Google Scholar 

  • Subramanian R, Gupta S, Talbot B (2007) Compliance strategies under permits for emissions. Prod Oper Manag 16:763–779

    Article  Google Scholar 

  • Sun Q (2017) Research on the influencing factors of reverse logistics carbon footprint under sustainable development. Environ Sci Pollut Res 24:22790–22798

    Article  CAS  Google Scholar 

  • Suzanne E, Absi N, Borodin V, van den Heuvel W (2020) A single-item lot-sizing problem with a by-product and inventory capacities. Eur J Oper Res 287:844–855

    Article  Google Scholar 

  • Tang XY, He Y, Salling M (2021) Optimal pricing and production strategies for two manufacturers with industrial symbiosis. Int J Prod Econ 235.

  • Turken N, Geda A (2020) Supply chain implications of industrial symbiosis: A review and avenues for future research. Resour Conserv Recycl 161:104974

    Article  Google Scholar 

  • Van Berkel R, Fujita T, Hashimoto S, Geng Y (2009) Industrial and urban symbiosis in Japan: Analysis of the Eco-Town program 1997-2006. J Environ Manage 90:1544–1556

    Article  Google Scholar 

  • Wang Z, Huo JZ, Duan YR (2019) Impact of government subsidies on pricing strategies in reverse supply chains of waste electrical and electronic equipment. Waste Manage. 95:440–449

    Article  Google Scholar 

  • Yang MM, Wei YL, Lin LW (2014) Integration of Industrial Ecology Approaches into Business Practices How AU Optronics Strengthens its Green Competitiveness in Panel. J Ind Ecol 18:670–676

    Article  Google Scholar 

  • Yang ZB, Hu XX, Gurnani H, Guan HQ (2018) Multichannel Distribution Strategy: Selling to a Competing Buyer with Limited Supplier Capacity. Manage Sci 64:2199–2218

    Article  Google Scholar 

  • Yazan DM (2016) Constructing joint production chains: An enterprise input-output approach for alternative energy use. Resour Conserv Recycl 107:38–52

    Article  Google Scholar 

  • Yazan DM, Fraccascia L (2020) Sustainable operations of industrial symbiosis: an enterprise input-output model integrated by agent-based simulation. Int J Prod Res 58:392–414

    Article  Google Scholar 

  • Yenipazarli A (2016) Managing new and remanufactured products to mitigate environmental damage under emissions regulation. Eur J Oper Res 249:117–130

    Article  Google Scholar 

  • Zhang B, Du Z, Wang Z (2018) Carbon reduction from sustainable consumption of waste resources: An optimal model for collaboration in an industrial symbiotic network. J Clean Prod 196:821–828

    Article  Google Scholar 

  • Zhang Q, Wang L, Zhou DQ (2020) Remanufacturing under energy performance contracting—an alternative insight from sustainable production. Environ Sci Pollut Res 27:40811–40825

    Article  CAS  Google Scholar 

  • Zheng MM, Shu Y, Wu K (2015) On optimal emergency orders with updated demand forecast and limited supply. Int J Prod Res 53:3692–3719

    Article  Google Scholar 

  • Zhou P, Xu H, Wang H (2020) Value of by-product synergy: A supply chain perspective. Eur J Oper Res 285:941–954

    Article  Google Scholar 

  • Zhu J, Ruth M (2013) Exploring the resilience of industrial ecosystems. J Environ Manage 122:65–75

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No.71774081, No.71834003), and the Fundamental Research Funds for the Central Universities (No. NK2020002).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed the creation of this manuscript. Lei Wang and Qin Zhang designed the game model. Lei Wang and Minhui Zhang performed simulations and analyzed data. Lei Wang and Qin Zhang discussed the results. Finally, Lei Wang and Hai Wang developed discussion and conclusion.

Corresponding author

Correspondence to Qin Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ilhan Ozturk

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix proof

Appendix proof

Proof of Lemma 1

Taking first and second derivatives of QA, we get \( \frac{\partial {\prod}_U}{\partial {Q}_A}=a-2{Q}_A-{c}_A-{rc}_d \), \( \frac{\partial^2{\prod}_U}{\partial {Q_A}^2}=-2 \), therefore, ∏U is concave in QA. Solving \( \frac{\partial {\prod}_U}{\partial {Q}_A}=0 \), we can obtain a maximum value \( {Q}_A^N=\frac{a-{c}_A-{rc}_d}{2} \). Thus, the optimal profit is \( {\Pi}_U^N=\frac{{\left(a-{c}_A-{rc}_d\right)}^2}{4} \). Similarly, we can obtain downstream manufacturer’s optimal production quantity is \( {Q}_B^N=\frac{b-{c}_B-{c}_r}{2} \), optimal profit is \( {\Pi}_D^N=\frac{{\left(b-{c}_B-{c}_r\right)}^2}{4} \).

Proof of Proposition 1

Depending on rQA > K or rQA ≤ K, we propose two sub-optimization problems (Sub-problem 1 and Sub-problem 2). The optimal solution for the original problem is thus the maximum of these two sub-problems.

  • Sub-problem 1: When rQA > K, upstream manufacturer’s profit is:

$$ {\displaystyle \begin{array}{l}{\Pi}_U\left(\left.{Q}_A\right|{Q}_A,w\right)=\left({P}_A-{c}_A\right){Q}_A- wK-{c}_d\left({rQ}_A-K\right)\\ {}s.t\ {rQ}_A>K\end{array}} $$

The unconstraint solution is \( {Q}_A(w)=\frac{a-{c}_A-{rc}_d}{2} \). Substituting this unconstraint solution into the constraint identifies a cutoff value of \( \frac{r\left(a-{c}_A-{rc}_d\right)}{2} \). Due to \( \frac{\partial^2{\Pi}_U\left(\left.{Q}_A\right|{Q}_A,w\right)}{\partial {Q_A}^2}<0 \), ΠU(QA|QA, w) is concave in QA. Thus, when \( K<\frac{r\left(a-{c}_A-{rc}_d\right)}{2} \), the unconstraint solution is optimal for sub-problem 1, and upstream manufacturer’s optimal production quantity and profit are \( {Q}_{A1}(w)=\frac{a-{c}_A-{rc}_d}{2} \), \( {\prod}_{U1}(w)=\frac{{\left(a-{c}_A-{rc}_d\right)}^2}{4}+K\left({c}_d-w\right) \). When \( K\ge \frac{r\left(a-{c}_A-{rc}_d\right)}{2} \), upstream manufacturer’s optimal production quantity and profit are \( {Q}_{A2}(w)=\frac{K}{r} \), \( {\prod}_{U2}(w)=\frac{-{K}^2+ rK\left(a-{c}_A- rw\right)}{r^2} \).

  • Sub-problem 2:When rQA ≤ K, upstream manufacturer’s profit is:

$$ {\displaystyle \begin{array}{l}{\Pi}_U\left(\left.{Q}_A\right|{Q}_A,w\right)=\left({P}_A-{c}_A\right){Q}_A-{wrQ}_A\\ {}s.t\ {rQ}_A\le K\end{array}} $$

We solve this sub-problem similar to Sub-problem 1. When \( K\ge \frac{r\left(a-{c}_A- rw\right)}{2} \), upstream manufacturer’s optimal production quantity and profit are \( {Q}_{A3}(w)=\frac{a-{c}_A- rw}{2}{\prod}_{U3}(w)=\frac{{\left(a-{c}_A- rw\right)}^2}{4} \). When \( K<\frac{r\left(a-{c}_A- rw\right)}{2} \), upstream manufacturer’s optimal production quantity and profit are \( {Q}_{A4}(w)=\frac{K}{r} \), \( {\prod}_{U4}(w)=\frac{-{K}^2+ rK\left(a-{c}_A- rw\right)}{r^2} \).

We compare the two sub-problems and derive the optimal solution for the original problem.

  1. (1)

    When \( K<\frac{r\left(a-{c}_A-{rc}_d\right)}{2} \), the optimal production quantity is \( {Q}_{A1}(w)=\frac{a-{c}_A-{rc}_d}{2} \), the optimal profit is \( {\prod}_{U1}(w)=\frac{{\left(a-{c}_A-{rc}_d\right)}^2}{4}+K\left({c}_d-w\right) \);

  2. (2)

    When \( K\in \left[\frac{r\left(a-{c}_A-{rc}_d\right)}{2},\frac{r\left(a-{c}_A- rw\right)}{2}\right] \), we need to compare ∏U2(w) and ∏U4(w). Because ∏U2(w) − ∏U4(w) = 0, the optimal production quantity is \( {Q}_{A2}(w)={Q}_{A4}(w)=\frac{K}{r} \); the optimal profit is \( {\prod}_{U2}(w)={\prod}_{U4}(w)=\frac{-{K}^2+ rK\left(a-{c}_A- rw\right)}{r^2} \).

  3. (3)

    When \( K>\frac{r\left(a-{c}_A- rw\right)}{2} \), the optimal production quantity is \( {Q}_{A3}(w)=\frac{a-{c}_A- rw}{2} \), the optimal profit is \( {\prod}_{U3}(w)=\frac{{\left(a-{c}_A- rw\right)}^2}{4} \).

Therefore, Proposition 1 is proved

Proof of Proposition 2

According to Proposition 1, we propose three sub-optimization problems (Sub-problem 1, Sub-problem 2 and Sub-problem 3). The optimal solution for the original problem is thus the maximum of these three sub-problems.

  • Sub-problem 1: When \( K<\frac{r\left(a-{c}_A-{rc}_d\right)}{2} \), The plant’s profit function is ∏p1 = (cb + w − cm)K, which is increasing in w. Due to w < cd, Then the optimal transfer price and profit are w1 = cd, ∏P1 = (cb + cd − cm)K.

  • Sub-problem 2: When \( K\in \left[\frac{r\left(a-{c}_A-{rc}_d\right)}{2},\frac{r\left(a-{c}_A- rw\right)}{2}\right] \), The plant’s profit function is ∏p2 = (cb + w − cm)K which is increasing in w. Due to \( K<\frac{r\left(a-{c}_A- rw\right)}{2}\Rightarrow w<\frac{r\left(a-{c}_A\right)-2K}{r^2} \). Hence, the optimal transfer price and profit are \( {w}_2=\frac{r\left(a-{c}_A\right)-2K}{r^2} \),\( {\prod}_{P2}=\frac{-2{K}^2+ rK\left[\left(a-{c}_A\right)+r\left({c}_b-{c}_m\right)\right]}{r^2} \).

  • Sub-problem 3:When \( K>\frac{r\left(a-{c}_A- rw\right)}{2} \), thus,\( w>\frac{r\left(a-{c}_A\right)-2K}{r^2} \),The plant’s profit function is:

$$ {\displaystyle \begin{array}{l}{\prod}_P(w)=\left({c}_b+w-{c}_m\right){rQ}_A=\left({c}_b+w-{c}_m\right)\frac{r\left(a-{c}_A- rw\right)}{2}\\ {}s.t\ w>\frac{r\left(a-{c}_A\right)-2K}{r^2}\end{array}} $$

The unconstraint solution is \( w=\frac{\left(a-{c}_A\right)-r\left({c}_b-{c}_m\right)}{2r} \). Substituting this unconstraint solution into the constraint identifies a cutoff value of \( \frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4} \). Due to \( \frac{\partial^2{\Pi}_P(w)}{\partial {w}^2}<0 \)P(w) is concave in w. Thus, when \( K>\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4} \), the unconstraint solution is optimal for Sub-problem 3, and then the optimal transfer price and profit are \( {w}_3=\frac{\left(a-{c}_A\right)-r\left({c}_b-{c}_m\right)}{2r} \), \( {\prod}_{P3}=\frac{{\left[a-{c}_A+r\left({c}_b-{c}_m\right)\right]}^2}{8} \). When \( K\le \frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4} \), the optimal transfer price and profit are \( {w}_4=\frac{r\left(a-{c}_A\right)-2K}{r^2} \), \( {\prod}_{P4}=\frac{-2{K}^2+ rK\left[\left(a-{c}_A\right)+r\left({c}_b-{c}_m\right)\right]}{r^2} \).

We compare the three sub-problems and derive the optimal solution for the original problem.

  1. (1)

    When \( K<\frac{r\left(a-{c}_A-{rc}_d\right)}{2} \), the optimal transfer price is w1 = cd, the optimal profit is ∏P1 = (cb + cd − cm)K;

  2. (2)

    when \( K\in \left[\frac{r\left(a-{c}_A-{rc}_d\right)}{2},\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4}\right] \), we need to compare ∏p2(w) and ∏p4(w). Because ∏p2(w) − ∏p4(w) = 0, the optimal production quantity is \( {w}_2={w}_4=\frac{r\left(a-{c}_A\right)-2K}{r^2} \), the optimal profit is \( {\prod}_{P2}={\prod}_{P4}=\frac{-2{K}^2+ rK\left[\left(a-{c}_A\right)+r\left({c}_b-{c}_m\right)\right]}{r^2} \).

  3. (3)

    When \( K>\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4} \), the optimal transfer price is \( {w}_3=\frac{\left(a-{c}_A\right)-r\left({c}_b-{c}_m\right)}{2r} \), the optimal profit is \( {\prod}_{P3}=\frac{{\left[a-{c}_A+r\left({c}_b-{c}_m\right)\right]}^2}{8} \).

Therefore, Proposition 2 is proved.

Proof of Corollary 1

According to the processing capacity, we can obtain three cases.

  • Case 1: When K ∈ (0, K1), \( {Q}_A^{\ast }={Q}_{A1}\frac{a-{c}_A-{rc}_d}{2}={Q}_A^N \), \( {\prod}_U^{\ast }=\frac{{\left(a-{c}_A-{rc}_d\right)}^2}{4}={\prod}_U^N \);

  • Case 2:When K ∈ [K1, K2], \( {Q}_A^{\ast }={Q}_{A2}>\frac{K_1}{r}=\frac{a-{c}_A-{rc}_d}{2}={Q}_A^N \), \( {\prod}_U^{\ast }={\prod}_{U2}>\frac{{\left({K}_1\right)}^2}{r^2}=\frac{{\left(a-{c}_A-{rc}_d\right)}^2}{4}{\prod}_U^{\ast }>{\prod}_U^N \);

  • Case 3:When K > K2, \( {Q}_A^{\ast }-{Q}_A^N={Q}_{A3}-{Q}_A^N=\frac{2{c}_d+r\left({c}_b-{c}_m\right)-\left(a-{c}_A\right)}{4}=\frac{c_d-{rw}_3}{2} \). Because of cd > w3 and r < 1, hence, \( {Q}_A^{\ast }>{Q}_A^N \). Due to \( {\prod}_U^{\ast }-{\prod}_U^N={\left({Q}_A^{\ast}\right)}^2-{\left({Q}_A^N\right)}^2>0\Rightarrow {\prod}_U^{\ast }>{\prod}_U^N \). In summary, Corollary 1 is proved.

Proof of Proposition 3

Depending on the supply of by-product, we propose two sub-optimization problems (Sub-problem 1 and Sub-problem 2).

  • Sub-problem 1: When Qb = K, according to the Table 1,the processing capacity constraint is \( K\le {K}_2=\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4} \). Under this condition, downstream manufacturer’s profit is:

$$ {\displaystyle \begin{array}{l}{\prod}_D^L\left({Q}_B\right)=\left({P}_B-{c}_B\right){Q}_B-{c}_bK-{c}_r\left({Q}_B-K\right)\\ {}s.t\ {Q}_B>K\end{array}} $$

The unconstraint solution is \( {Q}_B=\frac{b-{c}_B-{c}_r}{2} \). Substituting this unconstraint solution into the constraint identifies a cutoff value of b − cB − 2K. Due to \( \frac{\partial^2{\Pi}_D^L\left({Q}_B\right)}{\partial {Q_B}^2}<0 \), \( {\Pi}_D^L\left({Q}_B\right) \) is concave in QB. Let cr1 = b − cB − 2K, thus when cr < cr1, the unconstraint solution is optimal for Sub-problem 1, and then downstream manufacturer’s optimal production quantity and profit are \( {Q}_{B1}^L=\frac{b-{c}_B-{c}_r}{2} \), \( {\prod}_{D1}^L=\frac{{\left(b-{c}_B-{c}_r\right)}^2}{4}+K\left({c}_r-{c}_b\right) \). cr < b − cB to ensure downstream manufacturer’s is positive. When cr1 ≤ cr < b − cB, downstream manufacturer’s optimal production quantity and profit are \( {Q}_{B2}^L=K \), \( {\prod}_{D2}^L=-{K}^2+\left(b-{c}_B-{c}_b\right)K \).

  • Sub-problem 2: When Qb = rQA, according to the Table 1,the processing capacity constraint is \( K>{K}_2=\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4} \), Under this condition, downstream manufacturer’s profit is:

$$ {\displaystyle \begin{array}{l}{\prod}_D^H\left({Q}_B\right)=\left({P}_B-{c}_B\right){Q}_B-{c}_b{rQ}_A-{c}_r\left({Q}_B-{rQ}_A\right)\\ {}s.t\ {Q}_B>{rQ}_A\end{array}} $$

We solve this sub-problem similar to Sub-problem 1. Let \( {c}_{r2}=b-{c}_B-\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{2} \), When cr < cr2, downstream manufacturer’s optimal production quantity and profit are \( {Q}_{B1}^H=\frac{b-{c}_B-{c}_r}{2}, \), \( {\prod}_{D1}^H=\frac{{\left(b-{c}_B-{c}_r\right)}^2}{4}+\left({c}_r-{c}_b\right)\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4} \). When cr2 ≤ cr < b − cB, downstream manufacturer’s optimal production quantity and profit are \( {Q}_{B2}^H=\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4} \), \( {\prod}_{D2}^H=-{\left[\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4}\right]}^2+\left(b-{c}_B-{c}_b\right)\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4} \)

Therefore, Proposition 3 is proved.

  • Proof of Corollary 2

Obviously, in scenario L, \( {Q}_{B1}^L>{Q}_{B2}^L \), \( {\prod}_{D1}^L>{\prod}_{D2}^L \); in scenario H, \( {Q}_{B1}^H>{Q}_{B2}^H \), \( {\prod}_{D1}^H>{\prod}_{D2}^H \).

cr1 = b − cB − 2K, and \( K\le \frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4} \), thus \( {c}_{r1}\ge b-{c}_B-\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{2}={c}_{r2} \).

Hence, the production quantity and profit under different conditions are shown as follow in Appendix Fig 7. We propose two sub-optimization problems (Sub-problem 1and Sub-problem 2).

Fig 7
figure 7

production quantity and profit under different conditions

Sub-problem 1: Production quantity

According to the price of raw material, we can obtain three cases.

  • Case 1: When cr < cr2, we need to compare \( {Q}_{B1}^L \) with \( {Q}_{B1}^H \). However, \( {Q}_{B1}^L={Q}_{B1}^H=\frac{b-{c}_B-{c}_r}{2} \).

  • Case 2: When cr ∈ [cr2, cr1),we need to compare \( {Q}_{B1}^L \) with \( {Q}_{B2}^H \). Let \( f\left[\Delta Q\left({c}_r\right)\right]={Q}_{B1}^L-{Q}_{B2}^H=\frac{b-{c}_B-{c}_r}{2}-\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4} \), and the domain is cr ∈ [cr2, cr1).fQ(cr)] is decreasing in the domain, and the maximum value fQ(cr2)] = 0, thus \( {Q}_{B1}^L<{Q}_{B2}^H \)

  • Case 3: When cr ∈ [cr1, b − cB), we need to compare \( {Q}_{B2}^L \) with \( {Q}_{B2}^H \), \( {Q}_{B2}^L=K\le \frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4} \), thus \( {Q}_{B2}^L<{Q}_{B2}^H \).

Combine case 1,2 and 3, when cr < cr2, \( {Q}_B^L={Q}_B^H \); when cr ∈ [cr2, b − cB), \( {Q}_B^L<{Q}_B^H \).

Sub-problem 2: Profit

According to the price of raw material, we can obtain three cases.

  • Case 1: when cr < cr2, we need to compare \( {\prod}_{D1}^L \) with \( {\prod}_{D1}^H \).\( {\prod}_{D1}^H-{\prod}_{D1}^L=\left[\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4}-K\right]\left({c}_r-{c}_b\right)>0 \), thus \( {\prod}_{D3}^H>{\prod}_{D1}^L \).

  • Case 2:When cr ∈ [cr2, cr1), we need to compare \( {\prod}_{D1}^L \) with \( {\prod}_{D2}^H \). Let

$$ f\left[\varDelta {\prod}_D\left({c}_r\right)\right]={\prod}_{D1}^L-{\prod}_{D2}^H=\frac{{\left(b-{c}_B-{c}_r\right)}^2}{4}+K\left({c}_r-{c}_b\right)+{\left[\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4}\right]}^2-\left(b-{c}_B-{c}_b\right)\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4} $$

and the domain is cr ∈ [cr2, cr1), and \( K\le \frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4} \). The first and second derivatives of cr are \( \frac{\partial f\left[\varDelta {\prod}_D\left({c}_r\right)\right]}{\partial {c}_r}=\frac{c_B-b+{c}_r+2k}{2} \),\( \frac{\partial^2f\left[\varDelta {\prod}_D\left({c}_r\right)\right]}{\partial {c_r}^2}=\frac{1}{2} \). Hence f[ΔD(cr)] decreasing in the domain, and the maximum value\( f\left[\varDelta {\prod}_D\left({c}_{r2}\right)\right]=K\left[\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4}-{c}_b\right]-\left(b-{c}_B-{c}_b\right)\left[\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4}\right]\le -\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4}\left[b-{c}_B-\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4}\right]<0 \).

Hence, \( {\prod}_{D1}^L<{\prod}_{D2}^H \)

  • Case 3:When cr ∈ [cr1, b − cB), we need to compare \( {\prod}_{D2}^L \) with \( {\prod}_{D2}^H \). Let

\( f\left[\varDelta {\prod}_D(K)\right]={\prod}_{D2}^H-{\prod}_{D2}^L={K}^2-\left(b-{c}_B-{c}_b\right)K-{\left[\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4}\right]}^2+\left(b-{c}_B-{c}_b\right)\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4} \)and the domain is \( K\le \frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4} \). The first and second derivatives of K are \( \frac{\partial f\left[\varDelta {\prod}_D(K)\right]}{\partial K}=2K-b+{c}_B+{c}_b \), \( \frac{\partial^2f\left[\varDelta {\prod}_D\left({c}_r\right)\right]}{\partial {c_r}^2}=2 \). In addition, when cr ∈ [cr1, b − cB), \( {Q}_{B1}^L>{Q}_{B2}^L\Rightarrow \frac{b-{c}_B-{c}_b}{2}>\frac{b-{c}_B-{c}_r}{2}>\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4} \). Therefore, f[ΔD(K)] decreasing in the domain, and the maximum value \( f\left[\varDelta {\prod}_D\left(\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{4}\right)\right]=0 \), thus \( {\prod}_{D2}^H\ge {\prod}_{D2}^L \).

Combine case 1,2 and 3, \( {\prod}_D^L<{\prod}_D^H \).

In summary, Corollary 1 is proved.

Proof of Corollary 3

Sub-problem 1: Scenario L

According to the price of raw material, we can obtain two cases.

  • Case 1: When cr < cr1, \( {Q}_B^N={Q}_{B1}^L \), and \( {\prod}_D^N-{\prod}_{D1}^L=-K\left({c}_r-{c}_b\right)<0\Rightarrow {\prod}_{D1}^L>{\prod}_D^N \)

  • Case 2: When cr ≥ cr1, let \( f\left[\Delta Q\left({c}_r\right)\right]={Q}_B^N-{Q}_{B2}^L=\frac{b-{c}_B-{c}_r}{2}-K \), and the domain iscr ∈ [cr1, b − cB). fQ(cr)] is decreasing in the domain, and the maximum value fQ(cr1)] = 0, hence \( {Q}_B^N<{Q}_{B2}^L \). Let \( f\left[\varDelta \prod \left({c}_r\right)\right]={\prod}_D^N-{\prod}_{D2}^L=\frac{{\left(b-{c}_B-{c}_r\right)}^2}{4}+{K}^2-\left(b-{c}_B-{c}_b\right)K \), and the domain is cr ∈ [cr1, b − cB) The first and second derivatives of cr are \( \frac{\partial f\left[\varDelta \prod \left({c}_r\right)\right]}{\partial {c}_r}=\frac{c_B+{c}_r-b}{8} \),\( \frac{\partial^2f\left[\varDelta \prod \left({c}_r\right)\right]}{\partial {c_r}^2}=\frac{1}{8} \). Therefore, f[Δ ∏ (cr)] is decreasing in the domain, and the maximum value \( f\left[\varDelta \prod \left({c}_{r1}\right)\right]=2K\left(K-\frac{b-{c}_B-{c}_b}{2}\right)<0 \), hence, \( {\prod}_D^N<{\prod}_{D2}^L \)

Combine case 1,2 and 3, when cr < cr1, \( {Q}_B^{\ast }={Q}_B^N \), \( {\prod}_D^{\ast }>{\prod}_D^N \); when cr ≥ cr1, \( {Q}_B^{\ast }>{Q}_B^N \), \( {\prod}_D^{\ast }>{\prod}_D^N \).

Sub-problem 2:Scenario H

Similar to the Sub- problem 1, we can get the similar conclusions.

Therefore, Corollary 3 is proved.

Proof of Proposition 4

  • Sub-problem 1:when K < K1, the derivatives with respect to cm:

\( \frac{\partial {Q}_{A1}}{\partial {c}_m}=0 \), \( \frac{\partial {\prod}_{U1}}{\partial {c}_m}=0 \), \( \frac{\partial {w}_1}{\partial {c}_m}=0 \), \( \frac{\partial {\prod}_{P1}}{\partial {c}_m}=-K \), \( \frac{\partial {Q}_{B1}^L}{\partial {c}_m}=0 \), \( \frac{\partial {Q}_{B2}^L}{\partial {c}_m}=0 \), \( \frac{\partial {\prod}_{D1}}{\partial {c}_m}=0 \), \( \frac{\partial {\prod}_{D2}}{\partial {c}_m}=0 \)

  • Sub-problem 2:when K ∈ [K1, K2], the derivatives with respect to cm:

\( \frac{\partial {Q}_{A2}}{\partial {c}_m}=0 \), \( \frac{\partial {\prod}_{U2}}{\partial {c}_m}=0 \), \( \frac{\partial {w}_2}{\partial {c}_m}=0 \), \( \frac{\partial {\prod}_{P2}}{\partial {c}_m}=-K \), \( \frac{\partial {Q}_{B1}^L}{\partial {c}_m}=0 \), \( \frac{\partial {Q}_{B2}^L}{\partial {c}_m}=0 \), \( \frac{\partial {\prod}_{D1}^L}{\partial {c}_m}=0 \), \( \frac{\partial {\prod}_{D2}^L}{\partial {c}_m}=0 \)

  • Sub-problem 3:when K > K1, the derivatives with respect to cm

\( \frac{\partial {Q}_{A3}}{\partial {c}_m}=-\frac{r}{4} \), \( \frac{\partial {\prod}_{U3}}{\partial {c}_m}=\frac{r\left({c}_m-{c}_b\right)}{8}<0 \), \( \frac{\partial {w}_3}{\partial {c}_m}=\frac{1}{2} \), \( \frac{\partial {\prod}_{P3}}{\partial {c}_m}=\frac{r\left({c}_m-{c}_b\right)}{4}<0 \), \( \frac{\partial {Q}_{B1}^H}{\partial {c}_m}=0 \), \( \frac{\partial {Q}_{B2}^H}{\partial {c}_m}=-\frac{r^2}{4} \),\( \frac{\partial {\prod}_{D1}^H}{\partial {c}_m}=\frac{r^2\left({c}_b-{c}_r\right)}{4}<0 \), \( \frac{\partial {\prod}_{D2}^H}{\partial {c}_m}=-\frac{r^2}{4}\left(b-{c}_B-\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{2}-{c}_b\right)=-\frac{r^2}{4}\left({c}_{r2}-{c}_b\right)<0 \)

In summary, Proposition 2 is proved.

Proof of Corollary 4

According to the processing capacity, we can obtain three cases

  • Case 1: When K ≤ K1, \( {E}_{U1}-{E}_U^N={E}_A\left({Q}_{A1}-{Q}_A^N\right)+{rE}_d\left({Q}_{A1}-{Q}_A^N\right)+\left({E}_b-{E}_d\right)K \), because of \( {Q}_{A1}={Q}_A^N \) and Eb < Ed, hence \( {E}_{U1}<{E}_U^N \).

  • Case 2:When K ∈ [K1, K2] , \( {E}_{U2}-{E}_U^N=\frac{K}{r}\left({E}_A+{rE}_b\right)-\frac{a-{c}_A-{rc}_d}{2}\left({E}_A+{rE}_d\right) \), because ofEb < Ed and \( K>\frac{r\left(a-{c}_A-{rc}_d\right)}{2} \), the positive or negative of \( {E}_{U2}-{E}_U^N \) is indefinite. Let \( {E}_{U2}-{E}_U^N=0\Rightarrow {K}_E=\frac{E_A+{rE}_d}{E_A+{rE}_b}{K}_1 \) is the threshold, when K ≥ KE, \( {E}_{U2}>{E}_U^N \).

  • Case 3: When K ≥ K2, \( {E}_{U3}-{E}_U^N=\left({E}_A+{rE}_b\right)\left[\frac{a-{c}_A+r\left({c}_b-{c}_m\right)}{4}\right]+\left({E}_A+{rE}_d\right)\frac{a-{c}_A-{rc}_d}{2} \). Similar to case 2, the positive or negative of \( {E}_{U2}-{E}_U^N \) is indefinite.\( {E}_{U3}-{E}_U^N<\left({E}_A+{rE}_b\right)K+\left({E}_A+{rE}_d\right)\frac{a-{c}_A-{rc}_d}{2}\Rightarrow K<{K}_E \), \( {E}_{U3}<{E}_U^N \). Thus, KE is the threshold.

In summary, Corollary 4 is proved.

Proof of Corollary 5

Sub-problem 1: Scenario L

According to the price of raw material, we can obtain two cases.

  • Case 1: When cr < cr1, \( {E}_{D1}^L-{E}_D^N={E}_B\left({Q}_{B1}^L-{Q}_B^N\right)+{E}_r\left({Q}_{B1}^L-{Q}_B^N\right)-{E}_rK \). According to the Corollary 2, we have \( {Q}_{B1}^L={Q}_B^N \). Therefore, \( {E}_{D1}^L<{E}_D^N \).

  • Case 2: When cr ≥ cr1, \( {E}_{D2}^L-{E}_D^N={E}_B\left({Q}_{B2}^L-{Q}_B^N\right)+{E}_r\left({Q}_{B2}^L-{Q}_B^N\right)-{E}_rK \). According to the Corollary 2, we have \( {Q}_{B2}^L>{Q}_B^N \). the positive or negative of \( {E}_{D2}^L-{E}_D^N \) is indefinite. Let \( {E}_{D2}^L-{E}_D^N=0\Rightarrow {c}_{r1E}={c}_{r1}+2K\frac{E_r}{E_B+{E}_r} \) is the threshold. When cr1 ≥ cr1E, \( {E}_{D2}^L\ge {E}_D^N \).

Combine case 1 and case 2, when cr1 < cr1E, \( {E}_D^L<{E}_D^N \); when cr1 ≥ cr1E, \( {E}_D^L\ge {E}_D^N \).

Sub-problem 2: Scenario H

Similar to the Sub-problem 1, we can get the similar conclusions. \( {c}_{r2E}={c}_{r2}+\left[\frac{r\left(a-{c}_A\right)+{r}^2\left({c}_b-{c}_m\right)}{2}\right]\frac{E_r}{E_B+{E}_r} \) is the threshold, when cr1 < cr1E, \( {E}_D^L<{E}_D^N \); when cr1 ≥ cr1E, \( {E}_D^L\ge {E}_D^N \).

Therefore, Corollary 5 is proved.

Proof of Corollary 6

Sub-problem 1: proof of (1)

  • Case 1: According to Corollary 1, \( {Q}_A^{\ast}\ge {Q}_A^N \), \( {\prod}_U^{\ast}\ge {\prod}_U^N \). According to Corollary 4, when K < KE, \( {E}_U<{E}_U^N \), so the \( {SW}_U-{SW}_U^N=\left({\Pi}_U-{\Pi}_U^N\right)+\left({CS}_U-{CS}_U^N\right)-v\left({E}_U-{E}_U^N\right)>0 \) when K < KE.

  • Case 2: Similar to the Sub- problem 1, we can get the similar conclusions.

Sub-problem 2: proof of (2)

According to Proposition 1, when K > K2, \( {Q}_{A3}=\frac{\left(a-{c}_A\right)+r\left({c}_b-{c}_m\right)}{4} \), which K is not included. The value of QA will not change with K. So the value of ΠU, CSU and EU will not change with K either, SWU stays the same while K increase.

Therefore, Corollary 6 is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, Q., Zhang, M. et al. Waste converting through by-product synergy: an insight from three-echelon supply chain. Environ Sci Pollut Res 29, 9734–9754 (2022). https://doi.org/10.1007/s11356-021-16100-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16100-w

Keywords

Navigation