Skip to main content

Advertisement

Log in

Understanding the spatiotemporal variability and trends of surface ozone over India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

With rising anthropogenic activities, surface ozone levels have increased across different parts of the world including India. Previous studies have shown that surface ozone shows distinct characteristics across India but these results are based on isolated locations and any comprehensive and spatiotemporally consistent study about surface ozone variability lacks thus far. Keeping these facts in mind, we utilize ground-based observations and reanalysis datasets to investigate spatiotemporal variations of surface ozone and its linkages with meteorology and precursors over Indian region. A validation exercise shows that the Copernicus Atmosphere Monitoring Service Reanalysis (CAMSRA) reasonably compares against the ground-based observations showing better correlations (> 0.7) over southern regions and relatively lesser (> 0.5) correlations over northern and eastern regions. We have further quantified this agreement in terms of range, mean absolute error (MAE), and root mean square error (RMSE). A time series analysis shows that the CAMSRA captures seasonal variations irrespective of location. Spatial distribution of surface ozone shows higher (lower) concentrations of about 40–60 ppb (15–20 ppb) during pre-monsoon (monsoon) months over northern and western parts and peninsular India. A prominent increase during May is noted over the northern region, especially over the Indo-Gangetic Plains (IGP). These seasonal variations are linked to solar radiation (SR), temperature, low-level circulation, and boundary layer height (BLH). CAMSRA-based surface ozone shows increasing trends across all four regions (north, east, west, and south India) and also India as a whole (0.069 ppb year−1, p = 0.001) with highest trends over the eastern region. Furthermore, principal component analysis (PCA) reveals that the first (second) mode shows a high percentage variance explained, ranging between 30 and 50% (10–20%). The corresponding PC-1 time series exhibits a notable increase in the surface ozone over south and central India, which corroborates the trend obtained through the area averaged time series. The second mode (PC-2) indicates prominent interannual variability over the IGP (southern India) in the pre-monsoon (post-monsoon). During the monsoon season, an interesting dipole pattern is noticeable, which closely resembles the active and break spell patterns of the Indian summer monsoon. Further, we quantify the weightage of precursors and meteorological parameters on surface ozone concentrations. The analysis suggests that PC1 of surface ozone is strongly influenced by CO and NOx (the precursors) while meteorology seems to dominate the PC2 during the pre-monsoon season. Overall, the results indicate that changes in the precursors or meteorological conditions have significant influences on the surface ozone concentrations across India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4:
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All the data sets used in this present study are available publicly and the same has been provided in the manuscript as well as in the acknowledgement section.

References

  • Anshika, Kunchala RK, Attada R, Vellore RK, Soni VK, Mohan M, Chilukoti N (2021) On the understanding of surface ozone variability, its precursors and their associations with atmospheric conditions over the Delhi region. Atmospheric Research. Elsevier 258:105653. https://doi.org/10.1016/J.ATMOSRES.2021.105653

  • Atkinson R. 2007. Gas-phase tropospheric chemistry of organic compounds: a review. Atmospheric Environment. Pergamon, 41(SUPPL.): 200–240. https://doi.org/10.1016/J.ATMOSENV.2007.10.068.

  • Attada R, Dasari HP, Kunchala RK, Langodan S, Kumar KN, Knio O, Hoteit I (2020) Evaluating Cumulus Parameterization Schemes for the Simulation of Arabian Peninsula Winter Rainfall. Journal of Hydrometeorology. American Meteorological Society 21(5):1089–1114. https://doi.org/10.1175/JHM-D-19-0114.1

    Article  Google Scholar 

  • Avnery S, Mauzerall DL, Liu J, Horowitz LW (2011) Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric Environment. Pergamon 45(13):2284–2296. https://doi.org/10.1016/J.ATMOSENV.2010.11.045

    Article  CAS  Google Scholar 

  • Brunamonti S, Jorge T, Oelsner P, Hanumanthu S, Singh BB, Ravi Kumar K, et al. 2018. Balloon-borne measurements of temperature, water vapor, ozone and aerosol backscatter on the southern slopes of the Himalayas during StratoClim 2016-2017. Atmospheric Chemistry and Physics. Copernicus GmbH, 18(21): 15937–15957. https://doi.org/10.5194/ACP-18-15937-2018.

  • Chameides W, Walker JCG (1973) A photochemical theory of tropospheric ozone. Journal of Geophysical Research. John Wiley & Sons, Ltd 78(36):8751–8760. https://doi.org/10.1029/JC078I036P08751

    Article  CAS  Google Scholar 

  • Cooper OR, Parrish DD, Ziemke J, Balashov N V., Cupeiro M, Galbally IE, Gilge S, Horowitz L, Jensen NR, Lamarque J-F, Naik V, Oltmans SJ, Schwab J, Shindell DT, Thompson AM, Thouret V, Wang Y, Zbinden RM. 2014. Global distribution and trends of tropospheric ozone: An observation-based review. Elementa: Science of the Anthropocene. University of California Press, 2. https://doi.org/10.12952/JOURNAL.ELEMENTA.000029.

  • Crutzen PJ. 1995. Ozone in the troposphere. Composition, chemistry, and climate of the atmosphere, 349, 393.

  • Doherty RM, Wild O, Shindell DT, Zeng G, MacKenzie IA, Collins WJ, Fiore AM, Stevenson DS, Dentener FJ, Schultz MG, Hess P, Derwent RG, Keating TJ (2013) Impacts of climate change on surface ozone and intercontinental ozone pollution: A multi-model study. Journal of Geophysical Research: Atmospheres. John Wiley & Sons, Ltd 118(9):3744–3763. https://doi.org/10.1002/JGRD.50266

    Article  CAS  Google Scholar 

  • Fishman J, Ramanathan V, Crutzen PJ, Liu SC (1979) Tropospheric ozone and climate. Nature. 282(5741):818–820

    Article  CAS  Google Scholar 

  • Gadgil S. 2003. The Indian Monsoon and Its Variability. 10.1146/annurev.earth.31.100901.141251. Annual reviews 4139 El Camino Way, P.O. Box 10139, Palo Alto, CA 94303-0139, USA, 31: 429–467. https://doi.org/10.1146/ANNUREV.EARTH.31.100901.141251.

  • Ghude SD, Jena C, Chate DM, Beig G, Pfister GG, Kumar R, Ramanathan V. 2014. Reductions in India’s crop yield due to ozone. Geophysical Research Letters. John Wiley & Sons, Ltd, 41(15): 5685–5691. https://doi.org/10.1002/2014GL060930.

  • Girach IA, Ojha N, Nair PR, Pozzer A, Tiwari YK, Ravi Kumar K, Lelieveld J. 2017. Variations in O3, CO, and CH4 over the Bay of Bengal during the summer monsoon season: Shipborne measurements and model simulations. Atmospheric Chemistry and Physics. Copernicus GmbH, 17(1): 257–275. https://doi.org/10.5194/ACP-17-257-2017.

  • Girach IA, Ojha N, Nair PR, Tiwari YK, Kumar KR (2018) Variations of trace gases over the Bay of Bengal during the summer monsoon. J Earth Syst Sci. 127:15. https://doi.org/10.1007/s12040-017-0915-y

    Article  CAS  Google Scholar 

  • Grant A, Archibald AT, Cooke MC, Shallcross DE (2010) Modelling the oxidation of seventeen volatile organic compounds to track yields of CO and CO2. Atmos Environ. 44(31):3797–3804

    Article  CAS  Google Scholar 

  • Hakim ZQ, Archer-Nicholls S, Beig G, Folberth GA, Sudo K, Luke Abraham N, Ghude S, Henze DK, Archibald AT. 2019. Evaluation of tropospheric ozone and ozone precursors in simulations from the HTAPII and CCMI model intercomparisons—a focus on the Indian subcontinent. Atmospheric Chemistry and Physics. Copernicus GmbH, 19(9): 6437–6458. https://doi.org/10.5194/ACP-19-6437-2019.

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut JN 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society. John Wiley & Sons, Ltd, 146(730): 1999–2049. https://doi.org/10.1002/QJ.3803.

  • Inness A, Ades M, Agustí-Panareda A, Barr J, Benedictow A, Blechschmidt AM, Jose Dominguez J, Engelen R, Eskes H, Flemming J, Huijnen V, Jones L, Kipling Z, Massart S, Parrington M, Peuch VH, Razinger M, Remy S, Schulz M, Suttie M. 2019. The CAMS reanalysis of atmospheric composition. Atmospheric Chemistry and Physics. Copernicus GmbH, 19(6): 3515–3556. https://doi.org/10.5194/ACP-19-3515-2019.

  • Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmospheric Environment. Pergamon 43(1):51–63. https://doi.org/10.1016/J.ATMOSENV.2008.09.051

    Article  CAS  Google Scholar 

  • Kumar KR, Singh BB, Kumar KN (2021) Intriguing aspects of Asian summer monsoon anticyclone ozone variability from Microwave Limb Sounder measurements. Atmospheric Research, Elsevier 253:105479. https://doi.org/10.1016/J.ATMOSRES.2021.105479

    Article  Google Scholar 

  • Kumar R, Naja M, Pfister GG, Barth MC, Wiedinmyer C, Brasseur GP (2012) Simulations over South Asia using the Weather Research and Forecasting model with Chemistry (WRF-Chem): Chemistry evaluation and initial results. Geoscientific Model Development 5(3):619–648. https://doi.org/10.5194/GMD-5-619-2012

    Article  Google Scholar 

  • Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015 525:7569. Nature Publishing Group, 525(7569): 367–371. https://doi.org/10.1038/nature15371.

  • Levy H. 1971. Normal atmosphere: large radical and formaldehyde concentrations predicted. Science. American Association for the Advancement of Science, 173(3992): 141–143. https://doi.org/10.1126/SCIENCE.173.3992.141.

  • Logan JA. 1985. Tropospheric ozone: Seasonal behavior, trends, and anthropogenic influence. Journal of Geophysical Research: Atmospheres. John Wiley & Sons, Ltd, 90(D6): 10463–10482. https://doi.org/10.1029/JD090ID06P10463.

  • Lu X, Zhang L, Liu X, Gao M, Zhao Y, Shao J. 2018. Lower tropospheric ozone over India and its linkage to the South Asian monsoon. Atmospheric Chemistry and Physics. Copernicus GmbH, 18(5): 3101–3118. https://doi.org/10.5194/ACP-18-3101-2018.

  • Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H. 2007. A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmospheric Environment. Pergamon, 41(12): 2630–2643. https://doi.org/10.1016/J.ATMOSENV.2006.11.016.

  • Monks PS, Archibald AT, Colette A, Cooper O, Coyle M, Derwent R, Fowler D, Granier C, Law KS, Mills GE, Stevenson DS, Tarasova O, Thouret V, von Schneidemesser E, Sommariva R, Wild O, Williams ML 2015. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmospheric Chemistry and Physics. Copernicus GmbH, 15(15): 8889–8973. https://doi.org/10.5194/ACP-15-8889-2015.

  • Nair PR, David LM, Girach IA, Susan George K. 2011. Ozone in the marine boundary layer of Bay of Bengal during post-winter period: Spatial pattern and role of meteorology. Atmospheric Environment. Pergamon, 45(27): 4671–4681. https://doi.org/10.1016/J.ATMOSENV.2011.05.040.

  • Nair PR, Ajayakumar RS, David LM, Girach IA, Mottungan K (2018) Decadal changes in surface ozone at the tropical station Thiruvananthapuram (8.542° N, 76.858° E), India: effects of anthropogenic activities and meteorological variability. Environmental science and pollution research international. Environ Sci Pollut Res Int 25(15):14827–14843. https://doi.org/10.1007/S11356-018-1695-X

    Article  CAS  Google Scholar 

  • Ojha N, Girach I, Sharma K, Nair P, Singh J, Sharma N, Singh N, Flemming J, Inness A, Subrahmanyam KV. 2019. Surface ozone in the Doon Valley of the Himalayan foothills during spring. Environmental Science and Pollution Research 2019 26:19. Springer, 26(19): 19155–19170. https://doi.org/10.1007/S11356-019-05085-2.

  • Ojha N, Naja M, Singh KP, Sarangi T, Kumar R, Lal S, Lawrence MG, Butler TM, Chandola HC. 2012. Variabilities in ozone at a semi-urban site in the Indo-Gangetic Plain region: association with the meteorology and regional processes. Journal of Geophysical Research: Atmospheres. John Wiley & Sons, Ltd, 117(D20): 20301. https://doi.org/10.1029/2012JD017716.

  • Peshin SK, Sharma A, Sharma SK, Naja M, Mandal TK (2017) Spatio-temporal variation of air pollutants and the impact of anthropogenic effects on the photochemical buildup of ozone across Delhi-NCR. Sustainable Cities and Society, Elsevier 35:740–751. https://doi.org/10.1016/J.SCS.2017.09.024

    Article  Google Scholar 

  • Pusede SE, Steiner AL, Cohen RC. 2015. Temperature and recent trends in the chemistry of continental surface ozone. Chemical Reviews. American Chemical Society, 115(10): 3898–3918. https://doi.org/10.1021/CR5006815.

  • Rajeevan M, Gadgil S, Bhate J (2010) Active and break spells of the Indian summer monsoon. Journal of earth system science 119(3):229–247

    Article  Google Scholar 

  • Schultz MG, Schröder S, Lyapina O, Cooper OR, Galbally I, Petropavlovskikh I, von Schneidemesser E, Tanimoto H, Elshorbany Y, Naja M, Seguel RJ, Dauert U, Eckhardt P, Feigenspan S, Fiebig M, Hjellbrekke AG, Hong YD, Kjeld PC, Koide H, Lear G, Tarasick D, Ueno M, Wallasch M, Baumgardner D, Chuang MT, Gillett R, Lee M, Molloy S, Moolla R, Wang T, Sharps K, Adame JA, Ancellet G, Apadula F, Artaxo P, Barlasina ME, Bogucka M, Bonasoni P, Chang L, Colomb A, Cuevas-Agulló E, Cupeiro M, Degorska A, Ding A, Fröhlich M, Frolova M, Gadhavi H, Gheusi F, Gilge S, Gonzalez MY, Gros V, Hamad SH, Helmig D, Henriques D, Hermansen O, Holla R, Hueber J, Im U, Jaffe DA, Komala N, Kubistin D, Lam KS, Laurila T, Lee H, Levy I, Mazzoleni C, Mazzoleni LR, McClure-Begley A, Mohamad M, Murovec M, Navarro-Comas M, Nicodim F, Parrish D, Read KA, Reid N, Ries L, Saxena P, Schwab JJ, Scorgie Y, Senik I, Simmonds P, Sinha V, Skorokhod AI, Spain G, Spangl W, Spoor R, Springston SR, Steer K, Steinbacher M, Suharguniyawan E, Torre P, Trickl T, Weili L, Weller R, Xiaobin X, Xue L, Zhiqiang M 2017. Tropospheric Ozone Assessment Report: database and metrics data of global surface ozone observations. Elementa: Science of the Anthropocene. University of California Press, 5: 43. https://doi.org/10.1525/ELEMENTA.244.

  • Sharma A, Ojha N, Pozzer A, Mar KA, Beig G, Lelieveld J, Gunthe SS. 2017. WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms. Atmospheric Chemistry and Physics. Copernicus GmbH, 17(23): 14393–14413. https://doi.org/10.5194/ACP-17-14393-2017.

  • Singh BB, Krishnan R, Ayantika DC, Vellore RK, Sabin TP, Kumar KR, Brunamonti S, Hanumanthu S, Jorge T, Oelsner P, Sonbawne S, Naja M, Fadnavis S, Peter T, Srivastava MK 2021a. Linkage of water vapor distribution in the lower stratosphere to organized Asian summer monsoon convection. Climate Dynamics 2021. Springer, 1: 1–23. https://doi.org/10.1007/S00382-021-05772-2.

  • Singh M, Singh BB, Singh R, Upendra B, Kaur R, Gill SS, Biswas MS. 2021b. Quantifying COVID-19 enforced global changes in atmospheric pollutants using cloud computing based remote sensing. Remote Sensing Applications: Society and Environment. Elsevier, 22: 100489. https://doi.org/10.1016/J.RSASE.2021.100489.

  • Sun L, Xue L, Wang T, Gao J, Ding A, Cooper OR, Lin M, Xu P, Wang Z, Wang X, Wen L, Zhu Y, Chen T, Yang L, Wang Y, Chen J, Wang W. 2016. Significant increase of summertime ozone at Mount Tai in Central Eastern China. Atmospheric Chemistry and Physics. Copernicus GmbH, 16(16): 10637–10650. https://doi.org/10.5194/ACP-16-10637-2016.

  • Tiwari S, Dahiya A, Kumar N. 2015. Investigation into relationships among NO, NO2, NOx, O3, and CO at an urban background site in Delhi, India. Atmospheric Research. Elsevier, 157: 119–126. https://doi.org/10.1016/J.ATMOSRES.2015.01.008.

  • Tyagi S, Tiwari S, Mishra A, Hopke PK, Attri SD, Srivastava AK, Bisht DS. 2016. Spatial variability of concentrations of gaseous pollutants across the National Capital Region of Delhi, India. Atmospheric Pollution Research. Elsevier, 7(5): 808–816. https://doi.org/10.1016/J.APR.2016.04.008.

  • Verma N, Lakhani A, Maharaj Kumari K. 2017. High ozone episodes at a semi-urban site in India: photochemical generation and transport. Atmospheric Research. Elsevier Ltd, 197: 232–243. https://doi.org/10.1016/J.ATMOSRES.2017.07.014.

  • Wang T, Xue L, Brimblecombe P, Lam YF, Li L, Zhang L. 2017. Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects. Science of The Total Environment. Elsevier, 575: 1582–1596. https://doi.org/10.1016/J.SCITOTENV.2016.10.081.

  • Yadav R, Sahu LK, Beig G, Jaaffrey SNA. 2016. Role of long-range transport and local meteorology in seasonal variation of surface ozone and its precursors at an urban site in India. Atmospheric Research. Elsevier, 176–177: 96–107. https://doi.org/10.1016/J.ATMOSRES.2016.02.018.

  • Yadav RK, Singh BB. 2016. North Equatorial Indian Ocean Convection and Indian Summer Monsoon June Progression: a case study of 2013 and 2014. Pure and Applied Geophysics 2016 174:2. Springer, 174(2): 477–489. https://doi.org/10.1007/S00024-016-1341-9.

Download references

Acknowledgements

The authors thank the Central Pollution Control Board (CPCB) India for providing ground-based observations. We also acknowledge the ECMWF for making CAMS and ERA5 reanalysis data publicly available used to carry out the present study. We thank the anonymous reviewers for their useful and constructive comments on our manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RKK and BBS conceptualized the problem and wrote the manuscript. RKK, BBS, KRK, KNK, and VS performed the analysis. AR provided the scientific inputs on the discussions and edited the manuscript. All authors contributed toward the discussions and interpretation of the results.

Corresponding author

Correspondence to Ravi Kumar Kunchala.

Ethics declarations

Ethical approval and consent to participate

Authors consciously assure that the manuscript is an original work and follows the ethical standards of research.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gerhard Lammel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 0.98 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunchala, R.K., Singh, B.B., Karumuri, R.K. et al. Understanding the spatiotemporal variability and trends of surface ozone over India. Environ Sci Pollut Res 29, 6219–6236 (2022). https://doi.org/10.1007/s11356-021-16011-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16011-w

Keywords

Navigation