Skip to main content

Advertisement

Log in

Kefir milk alleviates benzene-induced immunotoxicity and hematotoxicity in rats

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The adverse health effects of benzene occupational and circumstance pollution exposure are an increasing concern. It leads to damage to various human tissues including bone marrow and ovarian tissues and many vital physiological processes. Previous studies showed that kefir is a rich probiotic, having protective effect, thanks to its antioxidant, anti-inflammatory, and immunomodulatory capacity. The purpose of this study was to evaluate the potential efficacy of kefir to remediate benzene toxicity in rat. Thirty-two female rats were randomly allocated and administered orally with benzene and/or kefir during a period of 21 consecutive days. At the end of the experiment, hematological and bone marrow cell changes were estimated. The animals exposed to benzene exhibited anemia and a significant decrease in the levels of white blood cell. Moreover, benzene led to the activation of gene expression of the pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-6 (IL-6), a myelotoxicity in bone marrow cells. Our data showed that kefir treatment alleviated benzene-associated weight loss and increased the number of whole blood cells in peripheral blood and nucleated cells in the bone marrow. Furthermore, these physiological results were observed with animals showing high concentrations of lactic acid bacteria (LAB) determined from fecal samples, which are considered an indicator of kefir-associated microorganisms. Our study suggests that kefir is a potential nutritional supplement target to attenuate hematotoxicity induced by benzene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

BEK:

group of benzene and kefir co-treated rats

BEN:

group of benzene-treated rats

cDNA:

complementary deoxyribonucleic acid

CFU:

colony forming units

CTR:

control

CTR:

group of control rats

DNA:

deoxyribonucleic acid

EDTA:

ethylenediaminetetraacetic acid

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

HCT:

hematocrit

HGB:

hemoglobin

HTLV-1:

human T-lymphotropic virus type I

IL-1β:

interleukin 1-β

IL-6:

interleukin 6

KEF:

group of kefir control rats

LAB:

lactic acid bacteria

MCH:

mean corpuscular hemoglobin

MCHC:

mean corpuscular hemoglobin concentration

MCV:

mean corpuscular volume

mRNA:

messenger ribonucleic acid

MRS:

de Man, Rogosa and Sharpe

NF-κB:

nucleus factor-kappa B

PBMC:

peripheral blood mononuclear cells

PBS:

phosphate-buffered saline

PLT:

platelets

RBC:

red blood cell

RNA:

ribonucleic acid

RPMI:

Roswell Park Memorial Institute medium

RT-PCR:

reverse transcriptase-polymerase chain reaction

SEM:

standard error of the mean

SPSS:

Statistical Package for the Social Sciences

TNF-α:

tumor necrosis factor α

WBC:

white blood cell

References

  • Abd El Ghany K, Hamouda R, Abd Elhafez E et al (2015) A potential role of Lactobacillus acidophilus LA1 and its exopolysaccharides on cancer cells in male albino mice. Biotechnol Biotechnol Equip 29(5):977–983

    Article  CAS  Google Scholar 

  • Angulo L, Lopez E, Lema C (1993) Microflora present in kefir grains of the Galician region (North-West of Spain). J Dairy Res 60(2):263–267

    Article  CAS  Google Scholar 

  • Anton D, Raudsepp P, Roasto M, Meremäe K, Kuusik S, Toomik P, Püssa T (2016) Comparative study of microbiological, chemical and sensory properties of kefirs produced in Estonia, Latvia and Lithuania. J Dairy Res 83(1):89–95

    Article  CAS  Google Scholar 

  • Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4(7):540–550

    Article  CAS  Google Scholar 

  • Bassig BA, Zhang L, Vermeulen R et al (2015) Comparison of hematological alterations and markers of B-cell activation in workers exposed to benzene, formaldehyde, and trichloroethylene. Carcinogenesis 37(7):692–700

    Article  CAS  Google Scholar 

  • Bechtold WE, Henderson RF (1993) Biomarkers of human exposure to benzene. J Toxicol Environ Health 40(2–3):377–386

    Article  CAS  Google Scholar 

  • Brugnone F, Perbellini L, Faccini GB, Pasini F, Danzi B, Maranelli G, Romeo L, Gobbi M, Zedde A (1989) Benzene in the blood and breath of normal people and occupationally exposed workers. Am J Ind Med 16(4):385–399

    Article  CAS  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    Article  CAS  Google Scholar 

  • Carasi P, Racedo SM, Jacquot C et al (2017) Enterococcus durans EP1 a promising anti-inflammatory probiotic able to stimulate sIgA and to increase Faecalibacterium prausnitzii abundance. Front Immunol 8:88

    Article  Google Scholar 

  • Chen C, Chan HM, Kubow S (2007) Kefir extracts suppress in vitro proliferation of estrogen-dependent human breast cancer cells but not normal mammary epithelial cells. J Med Food 10(3):416–422

    Article  CAS  Google Scholar 

  • Chen CC, Lin WC, Kong MS, Shi HN, Walker WA, Lin CY, Huang CT, Lin YC, Jung SM, Lin TY (2012) Oral inoculation of probiotics Lactobacillus acidophilus NCFM suppresses tumor growth both in segmental orthotropic colon cancer and extra-intestinal tissue. Br J Nutr 107(11):1623–1634

    Article  CAS  Google Scholar 

  • Chen J, Zheng Z, Chen Y, Li J, Qian S, Shi Y, Sun L, Han Y, Zhang S, Yu K (2016) Histone deacetylase inhibitors trichostatin A and MCP30 relieve benzene-induced hematotoxicity via restoring topoisomerase II alpha. PLoS One 11(4):e0153330

    Article  CAS  Google Scholar 

  • Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, Croce CM (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A 103(18):7024–7029

    Article  CAS  Google Scholar 

  • Cronkite EP, Bullis J, Inoue T, Drew RT (1984) Benzene inhalation produces leukemia in mice. Toxicol Appl Pharmacol 75(2):358–361

    Article  CAS  Google Scholar 

  • Cronkite EP, Drew RT, Inoue T, Bullis JE (1985) Benzene hematotoxicity and leukemogenesis. Am J Ind Med 7(5-6):447–456

    Article  CAS  Google Scholar 

  • Crump KS (1994) Risk of benzene-induced leukemia: a sensitivity analysis of the Pliofilm cohort with additional follow-up and new exposure estimates. J Toxicol Environ Health 42(2):219–242

    Article  CAS  Google Scholar 

  • Farag MA, Jomaa SA, El-Wahed AA (2020) The many faces of kefir fermented dairy products: quality characteristics, flavour chemistry, nutritional value, health benefits, and safety. Nutrients 12(2):346

    Article  CAS  Google Scholar 

  • Furuwaka N, Matsuoka A, Takahashi T et al (2000) Anti-metastatic effect of kefir grain components on Lewis Lung Carcinoma and highly metastatic B16 melanoma in mice. J Agr Sci Tokyo Nogyo Daigaku 45(1):62–70

    Google Scholar 

  • Galbraith D, Gross SA, Paustenbach D (2010) Benzene and human health: a historical review and appraisal of associations with various diseases. Crit Rev Toxicol 40(sup2):1–46

    Article  Google Scholar 

  • Garrote GL, Abraham AG, De Antoni GL (2001) Chemical and microbiological characterization of kefir grains. J Dairy Res 68(4):639–652

    Article  CAS  Google Scholar 

  • Gui Q, Lu H, Zhang C et al (2015) Well balanced commensal microbiota contributes to anticancer response in a lung cancer mouse model. Genet Mol Res 14(2):5642–5651

    Article  Google Scholar 

  • Han K, Lee N, Park H et al (2015) Anticancer and anti-inflammatory activity of probiotic Lactococcus lactis NK34. J Microbiol Biotechnol 25(10):1697–1701

    Article  Google Scholar 

  • Hu J, Wang C, Ye L, Yang W, Huang H, Meng F, Shi S, Ding Z (2015) Antitumor immune effect of oral administration of Lactobacillus plantarum to CT26 tumour-bearing mice. J Biosci 40(2):269–279

    Article  CAS  Google Scholar 

  • Huang L, Shan YJ, He CX, Ren MH, Tian PJ, Song W (2016) Effects of L. paracasei subp. paracasei X12 on cell cycle of colon cancer HT-29 cells and regulation of mTOR signaling pathway. J Funct Foods 21:431–439

    Article  CAS  Google Scholar 

  • Huff J (2007) Benzene-induced cancers: abridged history and occupational health impact. Int J Occup Environ Health 13(2):213–221

    Article  CAS  Google Scholar 

  • Huseini HF, Rahimzadeh G, Fazeli MR, Mehrazma M, Salehi M (2012) Evaluation of wound healing activities of kefir products. Burns 38(5):719–723

    Article  Google Scholar 

  • Ibrahim KS, Saleh ZA, Farrag AH et al (2011) Protective effects of zinc and selenium against benzene toxicity in rats. Toxicol Ind Health 27(6):537–545

    Article  CAS  Google Scholar 

  • Imani Fooladi A, Yazdi M, Pourmand M et al (2015) Th1 cytokine production induced by Lactobacillus acidophilus in BALB/c mice bearing transplanted breast tumor. Jundishapur J Microbiol 8(4):e17354

    Article  Google Scholar 

  • Irons RD, Dent JG, Baker TS, Rickert DE (1980) Benzene is metabolized and covalently bound in bone marrow in situ. Chem Biol Interact 30(2):241–245

    Article  CAS  Google Scholar 

  • Jascolka TL, Aguilar EC, Teixeira LG et al (2013) Kefir Supplementation Improves lipid profile and oxidative stress but does not reduce atherosclerotic lesion in apoE deficient mice. J Food Nutr Disor 2(3):1–7

    Google Scholar 

  • Kahouli I, Malhotra M, Tomaro-Duchesneau C et al (2015) Identification of Lactobacillus fermentum strains with potential against colorectal cancer by characterizing short chain fatty acids production, antiproliferative activity and survival in an intestinal fluid: in vitro analysis. J Bioanal Biomed 7(4):104–115

    CAS  Google Scholar 

  • Khoury N, El-Hayek S, Tarras O et al (2014) Kefir exhibits anti-proliferative and pro-apoptotic effects on colon adenocarcinoma cells with no significant effects on cell migration and invasion. Int J Oncol 45(5):2117–2127

    Article  CAS  Google Scholar 

  • Kumura H, Tanoue Y, Tsukahara M, Tanaka T, Shimazaki K (2004) Screening of dairy yeast strains for probiotic applications. J Dairy Sci 87(12):4050–4056

    Article  CAS  Google Scholar 

  • Kuugbee ED, Shang X, Gamallat Y, Bamba D, Awadasseid A, Suliman MA, Zang S, Ma Y, Chiwala G, Xin Y, Shang D (2016) Structural change in microbiota by a probiotic cocktail enhances the gut barrier and reduces cancer via TLR2 signaling in a rat model of colon cancer. Dig Dis Sci 61(10):2908–2920

    Article  CAS  Google Scholar 

  • Lai R, O’Brien S, Maushouri T et al (2002) Prognostic value of plasma interleukin-6 levels in patients with chronic lymphocytic leukemia. Cancer 95(5):1071–1075

    Article  CAS  Google Scholar 

  • Lan Q, Zhang L, Li G, Vermeulen R, Weinberg RS, Dosemeci M, Rappaport SM, Shen M, Alter BP, Wu Y, Kopp W, Waidyanatha S, Rabkin C, Guo W, Chanock S, Hayes RB, Linet M, Kim S, Yin S, Rothman N, Smith MT (2004) Hematotoxicity in workers exposed to low levels of benzene. Science 306(5702):1774–1776

    Article  CAS  Google Scholar 

  • Lee H, Kim H, Lee K et al (2015) Dead nano-sized Lactobacillus plantarum inhibits azoxymethane/dextran sulfate sodium-induced colon cancer in Balb/c mice. J Med Food 18(12):1400–1405

    Article  CAS  Google Scholar 

  • Linjawi SAM, Salem LM, Khalil WKB (2017) Jatropha curcas L. kernel prevents benzene induced clastogenicity, gene expression alteration and apoptosis in liver tissues of male rats. Indian J Exp Biol 55(4):225–234

    CAS  Google Scholar 

  • Liu JR, Wang SY, Lin YY, Lin CW (2002) Antitumor activity of milk kefir and soy milk kefir in tumor-bearing mice. Nutr Cancer 44(2):183–187

    Article  Google Scholar 

  • Loffler D, Brocke-Heidrich K, Pfeifer G et al (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110(4):1330–1333

    Article  CAS  Google Scholar 

  • Loh MM, Levy JI, Spengler JD, Houseman EA, Bennett DH (2007) Ranking cancer risks of organic hazardous air pollutants in the United States. Environ Health Perspect 115(8):1160–1168

    Article  CAS  Google Scholar 

  • Loomis D, Guyton KZ, Grosse Y, el Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Vilahur N, Mattock H, Straif K, International Agency for Research on Cancer Monograph Working Group (2017) Carcinogenicity of benzene. Lancet Oncol 18(12):1574–1575

    Article  Google Scholar 

  • Lopitz-Otsoa F, Rementeria A, Elguezabal N, Garaizar J (2006) Kefir: a symbiotic yeasts-bacteria community with alleged healthy capabilities. Rev Iberoam Micol 23(2):67–74

    Article  Google Scholar 

  • Maalouf K, Baydoun E, Rizk S (2011) Kefir induces cell-cycle arrest and apoptosis in HTLV1-negative malignant T-lymphocytes. Cancer Manag Res 3(1):39–47

    CAS  Google Scholar 

  • McHale CM, Zhang L, Smith MT (2012) Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment. Carcinogenesis 33(2):240–252

    Article  CAS  Google Scholar 

  • Mitsue T, Tachibana K, Fujio Y (1999) Efficient kefiran production by a mixed culture of Lactobacillus kefiranofaciens KF-75 and yeast strains. J Biosci Bioeng 3(87):400

    Google Scholar 

  • Mostert JF, Loretan T, Viljoen BC (2003) Microbial flora associated with South African household kefir. S Afr J Sci 99(1):92–94

    Google Scholar 

  • Nagira T, Narisawa J, Teruya K, Katakura Y, Shim SY, Kusumoto K, Tokumaru S, Tokumaru K, Barnes DW, Shirahata S (2002) Suppression of UVC-induced cell damage and enhancement of DNA repair by the fermented milk, Kefir. Cytotechnology 40(2):125–137

    Article  CAS  Google Scholar 

  • Otles S, Cagindi O (2003) Kefir: a probiotic dairy-composition, nutritional and therapeutic aspects. Pak J Nutr 2(2):54–59

    Article  Google Scholar 

  • Paustenbach D, Bass R, Price P (1993) Benzene toxicity and risk assessment, 1972-1992: implications for future regulation. Environ Health Perspect 101(6):177–200

    Article  CAS  Google Scholar 

  • Rajoka MSR, Mehwish HM, Fang H et al (2019) Characterization and anti-tumor activity of exopolysaccharide produced by Lactobacillus kefiri isolated from Chinese kefir grains. J Funct Foods 63:103588

    Article  CAS  Google Scholar 

  • Rinsky RA, Smith AB, Hornung R, Filloon TG, Young RJ, Okun AH, Landrigan PJ (1987) Benzene and leukemia. An epidemiologic risk assessment. N Engl J Med 316(17):1044–1050

    Article  CAS  Google Scholar 

  • Rizk S, Maalouf K, Baydoun E (2009) The antiproliferative effect of kefir cell-free fraction on HuT-102 malignant T lymphocytes. Clin Lymphoma Myeloma 9:S198–S203

    Article  CAS  Google Scholar 

  • Rodrigues KL, Carvalho JCT, Schneedorf JM (2005) Anti-inflammatory properties of kefir and its polysaccharide extract. Inflammopharmacology 13(5-6):485–492

    Article  CAS  Google Scholar 

  • Sakatani A, Fujiya M, Ueno N, Kashima S, Sasajima J, Moriichi K, Ikuta K, Tanabe H, Kohgo Y (2016) Polyphosphate derived from Lactobacillus brevis inhibits colon cancer progression through induction of cell apoptosis. Anticancer Res 36(2):591–598

    CAS  Google Scholar 

  • Savitz DA, Andrews KW (1997) Review of epidemiologic evidence on benzene and lymphatic and hematopoietic cancers. Am J Ind Med 31(3):287–295

    Article  CAS  Google Scholar 

  • Sharifi M, Moridnia A, Mortazavi D, Salehi M, Bagheri M, Sheikhi A (2017) Kefir: a powerful probiotics with anticancer properties. Med Oncol 34(11):183

    Article  CAS  Google Scholar 

  • Sheets P, Carlson G (2004) Kinetic factors involved in the metabolism of benzene in mouse lung and liver. J Toxicol Environ Health A67(5):421–430

    Article  Google Scholar 

  • Shiomi M, Sasaki K, Murofushi M et al (1982) Antitumor activity in mice of orally administered polysaccharide from Kefir grain. Jpn J Med Sci Biol 35(2):75–80

    Article  CAS  Google Scholar 

  • Simova E, Beshkova D, Angelov A, Hristozova T, Frengova G, Spasov Z (2002) Lactic acid bacteria and yeasts in kefir grains and kefir made from them. J Ind Microbiol Biotechnol 28(1):1–6

    Article  CAS  Google Scholar 

  • Singh RK, Bansode FW (2011) Benzene-induced histopathological changes and germ cell population dynamics in testes of Sprague Dawley rats. J Environ Biol 32(6):687–694

    CAS  Google Scholar 

  • Sirotkin A, Kádasi A, Balaží A, Kotwica J, Alwasel S, Harrath AH (2020a) The action of benzene, resveratrol and their combination on ovarian cell hormone release. Folia Biol 66(2):67–71

    CAS  Google Scholar 

  • Sirotkin AV, Kadasi A, Baláži A, Kotwica J, Alrezaki A, Harrath AH (2020b) Mechanisms of the direct effects of oil-related contaminants on ovarian cells. Environ Sci Pollut Res 27(5):5314–5322

    Article  Google Scholar 

  • Sirotkin AV, Macejková M, Tarko A, Fabova Z, Alrezaki A, Alwasel S, Harrath AH (2020c) Effects of benzene on gilts ovarian cell functions alone and in combination with buckwheat, rooibos, and vitex. Environ Sci Pollut Res 28(3):3434–3444

    Article  CAS  Google Scholar 

  • Smith MT (1996) The mechanism of benzene-induced leukemia: a hypothesis and speculations on the causes of leukemia. Environ Health Perspect 104(6):1219–1225

    CAS  Google Scholar 

  • Smith MT, Jones RM, Smith AH (2007) Benzene exposure and risk of non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev 16(3):385–391

    Article  CAS  Google Scholar 

  • Soltan Dallal M, Mojarrad M, Baghbani F et al (2015) Effects of probiotic Lactobacillus acidophilus and Lactobacillus casei on colorectal tumor cells activity (CaCo-2). Archives of Iranian. Medicine 18(3):167–172

    Google Scholar 

  • Subrahmanyam VV, Doane-Setzer P, Steinmetz KL et al (1990) Phenol-induced stimulation of hydroquinone bioactivation in mouse bone marrow in vivo: possible implications in benzene myelotoxicity. Toxicology 62(1):107–116

    Article  CAS  Google Scholar 

  • Takizawa S, Kojima S, Tamura S et al (1994) Lactobacillus kefirgranum sp. nov. and Lactobacillus parakefir sp. nov., two new species from kefir grains. Int J Syst Evol Microbiol 44(3):435–439

    Google Scholar 

  • Thirabunyanon M, Boonprasom P, Niamsup P (2009) Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol Lett 31(4):571–576

    Article  CAS  Google Scholar 

  • Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, Croce CM (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179(8):5082–5089

    Article  CAS  Google Scholar 

  • Vinderola CG, Duarte J, Thangavel D, Perdigón G, Farnworth E, Matar C (2005) Immunomodulating capacity of kefir. J Dairy Res 72(2):195–202

    Article  CAS  Google Scholar 

  • Walia S, Kamal R, Kanwar S et al (2015) Cyclooxygenase as a target in chemoprevention by probiotics during 1,2-dimethylhydrazine induced colon carcinogenesis in rats. Nutr Cancer 67(4):603–611

    Article  Google Scholar 

  • Wan Y, Xin Y, Zhang C et al (2014) Fermentation supernatants of Lactobacillus delbrueckii inhibit growth of human colon cancer cells and induce apoptosis through a caspase 3-dependent pathway. Oncol Lett 7(5):1738–1742

    Article  Google Scholar 

  • Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14(21):6735–6741

    Article  CAS  Google Scholar 

  • Weisel CP (2010) Benzene exposure: an overview of monitoring methods and their findings. Chem Biol Interact 184(0):58–66

    Article  CAS  Google Scholar 

  • Witthuhn RC, Schoeman T, Britz TJ (2005) Characterisation of the microbial population at different stages of Kefir production and Kefir grain mass cultivation. Int Dairy J 15(4):383–389

    Article  CAS  Google Scholar 

  • Wszolek M, Kupiec-Teahan B, Guldager HS et al (2006) In: Tamime A (eds) Production of kefir, koumiss and other related products. Fermented milks 174-216

  • Yang J, Zuo X, Bai W, Niu P, Tian L, Gao A (2014) PTEN methylation involved in benzene-induced hematotoxicity. Exp Mol Pathol 96(3):300–306

    Article  CAS  Google Scholar 

  • Zamberi NR, Abu N, Mohamed NE et al (2016) The antimetastatic and antiangiogenesis effects of kefir water on murine breast cancer cells. Integr Cancer Ther 15(4):53–66

    Article  CAS  Google Scholar 

  • Zhang L, Eastmond DA, Smith MT (2002) The nature of chromosomal aberrations detected in humans exposed to benzene. Crit Rev Toxicol 32(1):1–42

    Article  Google Scholar 

  • Zimmermann C, Yuen D, Mischitelle A, Minden MD, Brandwein JM, Schimmer A, Gagliese L, Lo C, Rydall A, Rodin G (2013) Symptom burden and supportive care in patients with acute leukemia. Leuk Res 37(7):731–736

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors of this research paper have directly participated in the planning, execution, or analysis of this study.

Olfa Ben Dhia, Mohamed Montassar Lasram, Sonia Ben-Hadj-Khalifa, Nouha Harizi, Nessrine Souai, and Afef Najjari performed the preparation of material, experimental design, and data analysis.

Raoudha Doghri and Lamia Charfi conducted the histological analysis.

Mohamed Montassar Lasram, Sonia Ben-Hadj-Khalifa, and Olfa Ben Dhia wrote the first draft of the manuscript.

Hadda-Imene Ouzari commented on the manuscript.

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Olfa Ben Dhia.

Ethics declarations

Ethics approval and consent to participate

All procedures were performed in accordance with the standard guidelines for care and use of laboratory animals, and approved by the Committee on Animal Care and Use of Pasteur Institute, El Manar University.

Consent for publication

All co-authors, mentioned below, have read and approved the submission of this paper to the journal Environmental Science and Pollution Research.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Dhia, O., Lasram, M.M., Harizi, N. et al. Kefir milk alleviates benzene-induced immunotoxicity and hematotoxicity in rats. Environ Sci Pollut Res 28, 42230–42242 (2021). https://doi.org/10.1007/s11356-021-13569-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13569-3

Keywords

Navigation