Skip to main content

Advertisement

Log in

Keep and promote biodiversity at polluted sites under phytomanagement

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The phytomanagement concept combines a sustainable reduction of pollutant linkages at risk-assessed contaminated sites with the generation of both valuable biomass for the (bio)economy and ecosystem services. One of the potential benefits of phytomanagement is the possibility to increase biodiversity in polluted sites. However, the unique biodiversity present in some polluted sites can be severely impacted by the implementation of phytomanagement practices, even resulting in the local extinction of endemic ecotypes or species of great conservation value. Here, we highlight the importance of promoting measures to minimise the potential adverse impact of phytomanagement on biodiversity at polluted sites, as well as recommend practices to increase biodiversity at phytomanaged sites without compromising its effectiveness in terms of reduction of pollutant linkages and the generation of valuable biomass and ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abou-Shanab R, Angle J, Chaney R (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889. https://doi.org/10.1016/j.soilbio.2006.04.045

    Article  CAS  Google Scholar 

  • Agnello AC, Bagard M, van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563-564:693–703. https://doi.org/10.1016/j.scitotenv.2015.10.061

    Article  CAS  Google Scholar 

  • Alam M, Olivier A, Paquette A, Dupras J, Revéret J-P, Messier C (2014) A general framework for the quantification and valuation of ecosystem services of tree-based intercropping systems. Agrofor Syst 88:679–691

    Article  Google Scholar 

  • Ali H, Khan E (2019) Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs-concepts and implications for wildlife and human health. Hum Ecol Risk Assess 25:1353–1376. https://doi.org/10.1080/10807039.2018.1469398

    Article  CAS  Google Scholar 

  • Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004a) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3:71–90

    Article  CAS  Google Scholar 

  • Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Onaindia M, Garbisu C (2004b) Chelate-enhanced phytoremediation of soils polluted with heavy metals. Rev Environ Sci Biotechnol 3:55–70

    Article  CAS  Google Scholar 

  • Alkorta I, Epelde L, Garbisu C (2017) Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation. FEMS Microbiol Lett 364. https://doi.org/10.1093/femsle/fnx200

  • Anza M, Salazar O, Epelde L, Garbisu C (2018) Data on the selection of biostimulating agents for the bioremediation of soil simultaneously contaminated with lindane and zinc. Data in Brief 20:1371–1377. https://doi.org/10.1016/j.dib.2018.08.203

    Article  Google Scholar 

  • Baker AJM, Ernst WHO, van der Ent A, Malaisse F, Ginocchi R (2010) Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. In: Batty LC, Hallberg KB (eds) Ecology of industrial pollution. Cambridge University Press, British Ecological Society, pp 7–40

  • Bandowe BAM, Leimer S, Meusel H, Velescu A, Dassen S, Eisenhauer N, Hoffmann T, Oelmann Y, Wilcke W (2019) Plant diversity enhances the natural attenuation of polycyclic aromatic compounds (PAHs and oxygenated PAHs) in grassland soils. Soil Biol Biochem 129:60–70. https://doi.org/10.1016/j.soilbio.2018.10.017

    Article  CAS  Google Scholar 

  • Bardgett R, Manning P, Morriën E, De Vries FT (2013) Hierarchical responses of plant-soil interactions to climate change: consequences for the global carbon cycle. J Ecol 101:334–343. https://doi.org/10.1111/1365-2745.12043

    Article  Google Scholar 

  • Barrutia O, Epelde L, García-Plazaola JI, Garbisu C, Becerril JM (2009) Phytoextraction potential of two Rumex acetosa L. accessions collected from metalliferous and non-metalliferous sites: effect of fertilization. Chemosphere 74:259–264. https://doi.org/10.1016/j.chemosphere.2008.09.036

    Article  CAS  Google Scholar 

  • Barrutia O, Artetxe U, Hernández A, Olano JM, García-Plazaola JI, Garbisu C, Becerril JM (2011a) Native plant communities in an abandoned Pb-Zn mining area of Northern Spain: implications for phytoremediation and germplasm preservation. Int J Phytorem 13:256–270. https://doi.org/10.1080/15226511003753946

    Article  CAS  Google Scholar 

  • Barrutia O, Garbisu C, Epelde L, Sampedro MC, Goicolea MA, Becerril JM (2011b) Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils. Sci Total Environ 409:4087–4093. https://doi.org/10.1016/j.scitotenv.2011.06.025

    Article  CAS  Google Scholar 

  • Batty LC (2005) The potential importance of mine sites for biodiversity. Mine Water Environ 24:101–103

    Article  Google Scholar 

  • Becerra-Castro C, Monterroso C, Prieto-Fernández A, Rodríguez-Lamas L, Loureiro-Viñas M, Acea MJ, Kidd PS (2012) Pseudometallophytes colonising Pb/Zn mine tailings: a description of the plant–microorganism–rhizosphere soil system and isolation of metal-tolerant bacteria. J Hazard Mater 217–218:350–359. https://doi.org/10.1016/j.jhazmat.2012.03.039

    Article  CAS  Google Scholar 

  • Brereton NJB, Gonzalez E, Desjardins D, Labrecque M, Pitre FE (2020) Co-cropping with three phytoremediation crops influences rhizosphere microbiome community in contaminated soil. Sci Total Environ 711:135067. https://doi.org/10.1016/j.scitotenv.2019.135067

    Article  CAS  Google Scholar 

  • Burges A, Epelde L, Benito G, Artetxe U, Becerril JM, Garbisu C (2016) Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal contaminated mine soil. Sci Total Environ 562:480–492. https://doi.org/10.1016/j.scitotenv.2016.04.080

    Article  CAS  Google Scholar 

  • Burges A, Epelde L, Blanco F, Becerril JM, Garbisu C (2017) Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil. Sci Total Environ 584:329–338. https://doi.org/10.1016/j.scitotenv.2016.12.146

    Article  CAS  Google Scholar 

  • Burges A, Alkorta I, Epelde L et al (2018) From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int J Phytorem 20:384–397. https://doi.org/10.1080/15226514.2017.1365340

    Article  CAS  Google Scholar 

  • Burges A, Fievet V, Oustriere N, Epelde L, Garbisu C, Becerril JM, Mench M (2020) Long-term phytomanagement with compost and a sunflower - tobacco rotation influences the structural microbial diversity of a Cu-contaminated soil. Sci Total Environ 700:134529. https://doi.org/10.1016/j.scitotenv.2019.134529

    Article  CAS  Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234. https://doi.org/10.1016/j.soilbio.2012.11.009

    Article  CAS  Google Scholar 

  • Cabello-Conejo MI, Becerra-Castro C, Prieto-Fernández A, Monterroso C, Saavedra-Ferro A, Mench M, Kidd PS (2014) Rhizobacterial inoculants can improve nickel phytoextraction by the hyperaccumulator Alyssum pintodasilvae. Plant Soil 379:35–50. https://doi.org/10.1007/s11104-014-2043-7

    Article  CAS  Google Scholar 

  • Cadotte MW, Davies TJ, Regetz J, Kembel SW, Cleland E, Oakley TH (2010) Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol Lett 13:96–105. https://doi.org/10.1111/j.1461-0248.2009.01405.x

    Article  Google Scholar 

  • Cardinale BJ, Srivastava DS, Emmett Duffy J, Wright JP, Downing AL, Sankaran M, Jouseau Z (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    Article  CAS  Google Scholar 

  • Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, Behrenfeld MJ, Boetius A, Boyd PW, Classen AT, Crowther TW, Danovaro R, Foreman CM, Huisman J, Hutchins DA, Jansson JK, Karl DM, Koskella B, Mark Welch DB, Martiny JBH, Moran MA, Orphan VJ, Reay DS, Remais JV, Rich VI, Singh BK, Stein LY, Stewart FJ, Sullivan MB, van Oppen MJH, Weaver SC, Webb EA, Webster NS (2019) Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17:569–586. https://doi.org/10.1038/s41579-019-0222-5

    Article  CAS  Google Scholar 

  • Chan KM, Pringle RM, Ranganathan J, Boggs CL, Chan YL, Ehrlich PR, Haff PK, Heller NE, Al-Khafaji K, Macmynowski DP (2007) When agendas collide: human welfare and biological conservation. Conserv Biol 21:51–68. https://doi.org/10.1111/j.1523-1739.2006.00570.x

    Article  Google Scholar 

  • Chen F, Yang Y, Mi J, Liu R, Hou HP, Zhang SL (2019) Effects of vegetation pattern and spontaneous succession on remediation of potential toxic metal-polluted soil in mine dumps. Sustainability 11:397. https://doi.org/10.3390/su11020397

    Article  CAS  Google Scholar 

  • Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JAM, Cregger MA, Moorhead LC, Courtney M, Patterson CM (2015) Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? Ecosphere 6:1–21. https://doi.org/10.1890/ES15-00217.1

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005

    Article  CAS  Google Scholar 

  • Compant S, Van Der Heijden MGA, Sessitsch A (2010) Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol Ecol 73:197–214. https://doi.org/10.1111/j.1574-6941.2010.00900

    Article  CAS  Google Scholar 

  • Conesa HM, Evangelou MWH, Robinson BH, Schulin R (2012) A critical view of current state of phytotechnologies to remediate soils: still a promising tool? Sci World J 2012:Article ID 173829–Article ID 173810. https://doi.org/10.1100/2012/173829

    Article  CAS  Google Scholar 

  • Corzo Remigio A, Chaney RL, Baker AJM, Edraki M, Erskine PD, Echevarria G, van der Ent A (2020) Phytoextraction of high value elements and contaminants from mining and mineral wastes: opportunities and limitations. Plant Soil 449:11–37. https://doi.org/10.1007/s11104-020-04487-3

    Article  CAS  Google Scholar 

  • Cundy A, Witter N, Mench M, Friesl W, Müller I, Neu S (2013) Developing principles of sustainability and stakeholder engagement for “gentle” remediation approaches: the European context. J Environ Manag 129:283–291. https://doi.org/10.1016/j.jenvman.2013.07.032

    Article  CAS  Google Scholar 

  • Cundy AB, Bardos RP, Puschenreiter M, Mench M, Bert V, Friesl-Hanl W, Müller I, Li XN, Weyens N, Witters N, Vangronsveld J (2016) Brownfields to green fields: realising wider benefits from practical contaminant phytomanagement strategies. J Environ Manag 184:67–77. https://doi.org/10.1016/j.jenvman.2016.03.028

    Article  CAS  Google Scholar 

  • De Conti L, Ceretta CA, Melo GWB, Tiecher TL, Silva LOS, Garlet LP, Mimmo T, Cesco S, Brunetto G (2019) Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils. Chemosphere 216:147–156. https://doi.org/10.1016/j.chemosphere.2018.10.134

    Article  CAS  Google Scholar 

  • De Deyn GB, Van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20:625–633

    Article  Google Scholar 

  • Delgado-Baquerizo M, Bardgett RD, Vitousek PM, Maestre FT, Williams MA, Eldridge DJ, Lambers H, Neuhauser S, Gallardo A, García-Velázquez L, Sala OE, Abades SR, Alfaro FD, Berhe AA, Bowker MA, Currier CM, Cutler NA, Hart SC, Hayes PE, Hseu ZY, Kirchmair M, Peña-Ramírez VM, Pérez CA, Reed SC, Santos F, Siebe C, Sullivan BW, Weber-Grullon L, Fierer N (2019) Changes in belowground biodiversity during ecosystem development. Proc Natl Acad Sci 116:6891–6896. https://doi.org/10.1073/pnas.1818400116

    Article  CAS  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84. https://doi.org/10.1016/j.soilbio.2007.06.024

    Article  CAS  Google Scholar 

  • Desjardins D, Brereton NJB, Marchand L, Brisson J, Pitre FE, Labrecque M (2018) Complementarity of three distinctive phytoremediation crops for multiple-trace element contaminated soil. Sci Total Environ 610-611:1428–1438. https://doi.org/10.1016/j.scitotenv.2017.08.196

    Article  CAS  Google Scholar 

  • Duelli P, Obrist MK (2003) Biodiversity indicators: the choice of values and measures. Agric Ecosyst Environ 98:87–98

    Article  Google Scholar 

  • Durand A, Maillard F, Foulon J, Gweon HS, Valot B, Chalot M (2017) Environmental metabarcoding reveals contrasting belowground and aboveground fungal communities from poplar at a Hg phytomanagement site. Microb Ecol 74:795–809. https://doi.org/10.1007/s00248-017-0984-0

    Article  CAS  Google Scholar 

  • Dushenkov V, Nanda Kumar PBA, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  CAS  Google Scholar 

  • Epelde L, Becerril JM, Hernández-Allica J, Barrutia O, Garbisu C (2008) Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction. Appl Soil Ecol 39:299–310. https://doi.org/10.1016/j.apsoil.2008.01.005

    Article  Google Scholar 

  • Epelde L, Becerril JM, Mijangos I, Garbisu C (2009) Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health. J Environ Qual 38:2041–2049. https://doi.org/10.2134/jeq2009.0006

    Article  CAS  Google Scholar 

  • Epelde L, Becerril JM, Kowalchuk GA, Deng Y, Zhou J, Garbisu C (2010) Impact of metal pollution and Thlaspi caerulescens growth on soil microbial communities. Appl Environ Microbiol 76:7843–7853. https://doi.org/10.1128/AEM.01045-10

    Article  CAS  Google Scholar 

  • Epelde L, Becerril JM, Alkorta I, Garbisu C (2014) Adaptive long-term monitoring of soil health in metal phytostabilization: ecological attributes and ecosystem services based on soil microbial parameters. Int J Phytorem 16:971–981. https://doi.org/10.1080/15226514.2013.810578

    Article  Google Scholar 

  • Evangelou MWH, Papazoglou EG, Robinson BH, Schulin R (2015) Phytomanagement: phytoremediation and the production of biomass for economic revenue on contaminated land. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 1. Springer International Publishing, Cham, pp 115–132

    Google Scholar 

  • Fässler E, Robinson BH, Stauffer W, Gupta SK, Papritz A, Schulin R (2010) Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agric Ecosyst Environ 136:49–58. https://doi.org/10.1016/j.agee.2009.11.007

    Article  CAS  Google Scholar 

  • Ferron P, Deguine J-P (2005) Crop protection, biological control, habitat management and integrated farming. A review. Agron Sustain Dev 25:17–24

    Article  Google Scholar 

  • Garaiyurrebaso O, Garbisu C, Blanco F, Lanzén A, Martín I, Epelde L, Becerril JM, Jechalke S, Smalla K, Grohmann E, Alkorta I (2017) Long-term effects of aided phytostabilization on microbial communities of metal-contaminated mine soil. FEMS Microbiol Ecol 93(3). https://doi.org/10.1093/femsec/fiw252

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  Google Scholar 

  • Garbisu C, Garaiyurrebaso O, Epelde L, Grohmann E, Alkorta I (2017) Plasmid-mediated bioaugmentation for the bioremediation of contaminated soils. Front Microbiol 8(1966). https://doi.org/10.3389/fmicb.2017.01966

  • Garrouj M, Marchand L, Frayssinet M, Mench M, Castagneyrol B (2018) Trace element transfer from two contaminated soil series to Medicago sativa and one of its herbivores, Spodoptera exigua. Int J Phytorem 20:650–657. https://doi.org/10.1080/15226514.2017.1374342

    Article  CAS  Google Scholar 

  • Giagnoni L, dos Anjos Borges LG, Giongo A, de Oliveira SA, Ardissone AN, Triplett EW, Mench M, Renella G (2020) Dolomite and compost as amendments for enhancing phytostabilization and increasing microbiota of the leachates from a Cu-contaminated soil. Agronomy 10:719. https://doi.org/10.3390/agronomy10050719

    Article  Google Scholar 

  • Ginocchio R, Baker AJM (2004) Metallophytes in Latin America: a remarkable biological and genetic resource scarcely known and studied in the region. Rev Chil Hist Nat 77:185–194. https://doi.org/10.4067/S0716-078X2004000100014

    Article  Google Scholar 

  • Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser J, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230

    Article  CAS  Google Scholar 

  • Haines-Young R, Potschin M (2010) The links between biodiversity, ecosystem services and human well-being. In: Raffaelli DG, Frid CLJ (eds) Ecosystem ecology: a new synthesis. Cambridge University Press. British Ecological Society, pp 110–139

  • Harrison JG, Griffin EA (2020) The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? Environ Microbiol 22:2107–2123. https://doi.org/10.1111/1462-2920.14968

    Article  Google Scholar 

  • Hernández-Allica J, Becerril JM, Zárate O, Garbisu C (2006) Assessment of the efficiency of a metal phytoextraction process with biological indicators of soil health. Plant Soil 281:147–158

    Article  Google Scholar 

  • Herzig R, Nehnevajova E, Pfistner C, Schwitzguebel JP, Ricci A, Keller C (2014) Feasibility of labile Zn phytoextraction using enhanced tobacco and sunflower: results of five- and one-year field-scale experiments in Switzerland. Int J Phytorem 16:735–754. https://doi.org/10.1080/15226514.2013.856846

    Article  CAS  Google Scholar 

  • Hooper DU, Bignell DE, Brown VK et al (2000) Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. Bioscience 50:1049–1061

    Article  Google Scholar 

  • Imperato V, Portillo-Estrada M, McAmmond BM, Douwen Y, Van Hamme JD, Gawronski SW, Vangronsveld J, Thijs S (2019) Genomic diversity of two hydrocarbon-degrading and plant growth-promoting Pseudomonas species isolated from the oil field of Bóbrka (Poland). Genes (Basel) 10:443. https://doi.org/10.3390/genes10060443

    Article  CAS  Google Scholar 

  • IPBES (2019) In: Díaz S, Settele J, Brondízio ES, Ngo HT, Guèze M, Agard J, Arneth A, Balvanera P, Brauman KA, Butchart SHM, Chan KMA, Garibaldi LA, Ichii K, Liu J, Subramanian SM, Midgley GF, Miloslavich P, Molnár Z, Obura D, Pfaff A, Polasky S, Purvis A, Razzaque J, Reyers B, Chowdhury RR, Shin YJ, Visseren-Hamakers IJ, Willis KJ, Zayas CN (eds) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES secretariat, Bonn 56 pages

    Google Scholar 

  • Jiang C-Y, Sheng X-F, Qian M, Wang Q-Y (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164. https://doi.org/10.1016/j.chemosphere.2008.02.006

    Article  CAS  Google Scholar 

  • Ju W, Jin X, Liu L, Shen G, Zhao W, Duan C, Fang L (2020) Rhizobacteria inoculation benefits nutrient availability for phytostabilization in copper contaminated soil: drivers from bacterial community structures in rhizosphere. Appl Soil Ecol Applied 150:103450. https://doi.org/10.1016/j.apsoil.2019.103450

    Article  Google Scholar 

  • Kardol P, Wardle DA (2010) How understanding aboveground-belowground linkages can assist restoration ecology. Trends Ecol Evol 25:670–679. https://doi.org/10.1016/j.tree.2010.09.001

    Article  Google Scholar 

  • Kidd P, Mench M, Álvarez-López V et al (2015) Agronomic practices for improving gentle remediation of trace element-contaminated soils. Int J Phytorem 17:1005–1037. https://doi.org/10.1080/15226514.2014.1003788

  • Kolbas A, Kidd P, Guinberteau J, Jaunatre R, Herzig R, Mench M (2015) Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower. Environ Sci Pollut Res 22:5370–5382. https://doi.org/10.1007/s11356-014-4006-1

    Article  CAS  Google Scholar 

  • Kowalchuk GA, Stienstra AW, Stephen JR et al (2000) Changes in the community structure of ammonia oxidizing bacteria during secondary succession of calcareous grasslands. Environ Microbiol 2:99–110

    Article  CAS  Google Scholar 

  • Kumpiene J, Guerri G, Landi L, Pietramellara G, Nannipieri P, Renella G (2009) Microbial biomass, respiration and enzyme activities after in situ aided phytostabilization of a Pb- and Cu-contaminated soil. Ecotoxicol Environ Saf 72:115–119. https://doi.org/10.1016/j.ecoenv.2008.07.002

    Article  CAS  Google Scholar 

  • Kumpiene J, Bert V, Dimitriou I, Eriksson J, Friesl-Hanl W, Galazka F, Herzig R, Janssen JO, Kidd P, Mench M, Müller I, Neu S, Oustriere N, Puschenreiter M, Renella G, Roumier PH, Siebielec G, Vangronsveld J, Manier N (2014) Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by Gentle Remediation Options (GRO). Sci Total Environ 496:510–522. https://doi.org/10.1016/j.scitotenv.2014.06.130

    Article  CAS  Google Scholar 

  • Kumpiene J, Renella G, Denys S, Marschner B, Mench M, Adriaensen K, Vangronsveld J, Friesl-Hanl W, Puschenreiter M (2017) Review and evaluation of methods for determining the bioavailable fraction of trace elements in soils. Pedosphere 27:389–406. https://doi.org/10.1016/S1002-0160(17)60337-0

    Article  Google Scholar 

  • Kuppens T, Van Dael M, Vanreppelen K, Thewys T, Yperman J, Carleer R, Schreurs S, Van Passel S (2015) Techno-economic assessment of fast pyrolysis for the valorization of short rotation coppice cultivated for phytoextraction. J Clean Prod 88:336–344. https://doi.org/10.1016/j.jclepro.2014.07.023

    Article  CAS  Google Scholar 

  • Lacalle RG, Gómez-Sagasti MT, Artetxe U, Garbisu C, Becerril JM (2018) Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by nano-rhizoremediation. Sci Total Environ 618:347–356. https://doi.org/10.1016/j.scitotenv.2017.10.334

    Article  CAS  Google Scholar 

  • Li H, Wang XG, Liang C, Hao Z, Zhou L, Ma S, Li X, Yang S, Yao F, Jiang Y (2015) Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests. Sci Rep 5:12234. https://doi.org/10.1038/srep12234

    Article  CAS  Google Scholar 

  • Ma TT, Teng Y, Luo YM, Christie P (2013) Legume-grass intercropping phytoremediation of phthalic acid esters in soil near an electronic waste recycling site: a field study. Int J Phytorem 15:154–167. https://doi.org/10.1080/15226514.2012.687016

    Article  CAS  Google Scholar 

  • Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69. https://doi.org/10.1016/j.jenvman.2015.03.024

    Article  CAS  Google Scholar 

  • Madejón E, de Mora AP, Felipe E, Burgos P, Cabrera F (2006) Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environ Pollut 139:40–52. https://doi.org/10.1016/j.envpol.2005.04.034

    Article  CAS  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity, 2nd edn. Blackwell Science Ltd, Oxford

    Google Scholar 

  • Malik ZH, Ravindran KC, Sathiyara G (2017) Phytoremediation: a novel strategy and eco-friendly green technology for removal of toxic metals. Int J Agric Environ Res 3:1–18

    Google Scholar 

  • Mann RM, Vijver MG, Peijnenburg WJGM (2011) Metals and metalloids in terrestrial systems: bioaccumulation, biomagnification and subsequent adverse effects. In: Sánchez-Bayo F, van den Brink PJ, Mann R (eds) Ecological impacts of toxic chemicals. Bentham Science Publishers, pp 43–62

  • Massoura ST, Echevarria G, Leclerc-Cessac E, Morel JL (2004) Response of excluder, indicator, and hyperaccumulator plants to nickel availability in soils. Australian J Soil Res 42:933–938. https://doi.org/10.1071/SR03157

    Article  CAS  Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediat 11:251–267. https://doi.org/10.1080/15226510802432678

    Article  CAS  Google Scholar 

  • Meglouli H, Fontaine J, Verdin A, Magnin-Robert M, Tisserant B, Hijri M, Lounès-Hadj Sahraoui A (2019) Aided phytoremediation to clean up dioxins/furans-aged contaminated soil: correlation between microbial communities and pollutant dissipation. Microorganisms 7:523. https://doi.org/10.3390/microorganisms7110523

    Article  CAS  Google Scholar 

  • Mench M, Schwitzguébel JP, Schröder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900. https://doi.org/10.1007/s11356-009-0252-z

    Article  CAS  Google Scholar 

  • Mench MJ, Dellise M, Bes CM, Marchand L, Kolbas A, le Coustumer P, Oustrière N (2018) Phytomanagement and remediation of Cu-contaminated soils by high yielding crops at a former wood preservation site: sunflower biomass and ionome. Front Ecol Evol 6:123. https://doi.org/10.3389/fevo.2018.00123

    Article  Google Scholar 

  • Mouchet MA, Villéger S, Mason NW et al (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876. https://doi.org/10.1111/j.1365-2435.2010.01695.x

    Article  Google Scholar 

  • Naeem S, Chazdon R, Duffy JE, Prager C, Worm B (2016) Biodiversity and human well-being: an essential link for sustainable development. Proc R Soc B 283:20162091. https://doi.org/10.1098/rspb.2016.2091

    Article  Google Scholar 

  • Olguin EJ, Sanchez-Galvan G, Melo FJ, Hernandez VJ, Gonzalez-Portela RE (2017) Long-term assessment at field scale of floating treatment wetlands for improvement of water quality and provision of ecosystem services in a eutrophic urban pond. Sci Total Environ 584:561–571. https://doi.org/10.1016/j.scitotenv.2017.01.072

    Article  CAS  Google Scholar 

  • Pandey VC, Bauddh K (2018) Phytomanagement of polluted sites - market opportunities in sustainable phytoremediation. Elsevier, p 626. https://doi.org/10.1016/C2017-0-00586-4

  • Pandey VC, Bajpai O, Singh N (2016) Energy crops in sustainable phytoremediation. Renew Sust Energ Rev 54:58–73. https://doi.org/10.1016/j.rser.2015.09.078

    Article  Google Scholar 

  • Pardo T, Clemente R, Epelde L, Garbisu C, Bernal MP (2014) Evaluation of the phytostabilisation efficiency in a trace elements contaminated soil using soil health indicators. J Hazard Mater 268:68–76. https://doi.org/10.1016/j.jhazmat.2014.01.003

    Article  CAS  Google Scholar 

  • Parraga-Aguado I, Querejeta JI, Gonzalez-Alcaraz M-N et al (2014) Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: grasses vs. shrubs vs. trees. J Environ Manag 133:51–58. https://doi.org/10.1016/j.jenvman.2013.12.001

    Article  CAS  Google Scholar 

  • Pat-Espadas AM, Loredo Portales R, Amabilis-Sosa LE, Gómez G, Vidal G (2018) Review of constructed wetlands for acid mine drainage treatment. Water 10:1685. https://doi.org/10.3390/w10111685

    Article  CAS  Google Scholar 

  • Paul ALD, Erskine PD, van der Ent A (2018) Metallophytes on Zn-Pb mineralised soils and mining wastes in Broken Hill, NSW, Australia. Australian J Bot 66:124–133. https://doi.org/10.1071/BT17143

    Article  CAS  Google Scholar 

  • Peterson LR, Trivett V, Baker AJM, Aguiar C, Pollard AJ (2003) Spread of metals through an invertebrate food chain as influenced by a plant that hyperaccumulates nickel. Chemoecology 13:103–108. https://doi.org/10.1007/s00049-003-0234-4

    Article  CAS  Google Scholar 

  • Phillips R, Finzi A, Bernhardt E (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194. https://doi.org/10.1111/j.1461-0248.2010.01570.x

    Article  Google Scholar 

  • Prins CN, Hantzis LJ, Valdez-Barillas JR, Cappa JJ, Fakra SC, Milano de Tomasel C, Wall DH, Pilon-Smits EAH (2019) Getting to the root of selenium hyperaccumulation – localization and speciation of root selenium and its effects on nematodes. Soil Systems 3:47. https://doi.org/10.3390/soilsystems3030047

    Article  CAS  Google Scholar 

  • Pulighe G, Bonati G, Colangeli M, Morese MM, Traverso L, Lupia F, Khawaja C, Janssen R, Fava F (2019) Ongoing and emerging issues for sustainable bioenergy production on marginal lands in the Mediterranean regions. Renew Sust Energ Rev 103:58–70. https://doi.org/10.1016/j.rser.2018.12.043

    Article  Google Scholar 

  • Rajkumar M, Prasad MNV, Swaminathan S, Freitas H (2013) Climate change driven plant-metal-microbe interactions. Environ Int 53:74–86. https://doi.org/10.1016/j.envint.2012.12.009

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2017a) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218:407–411. https://doi.org/10.1111/nph.14907

    Article  Google Scholar 

  • Reeves RD, Baker AJM, Jaffre T, Erskine PD, Echevarria G, van der Ent A (2017b) A global database for plants that hyperaccumulate metal and metalloid trace element. New Phytol 218:407–411. https://doi.org/10.1111/nph.14907

    Article  Google Scholar 

  • Reuter H, Hölker F, Middelhoff U, Jopp F, Eschenbach C, Breckling B (2005) The concepts of emergent and collective properties in individual-based models - summary and outlook of the Bornhöved case studies. Ecol Model 186:489–501. https://doi.org/10.1016/j.ecolmodel.2005.02.014

    Article  Google Scholar 

  • Risueño Y, Petri C, Conesa HM (2020) The importance of edaphic niches functionality for the sustainability of phytomanagement in semiarid mining impacted ecosystems. J Environ Manag 266:110613. https://doi.org/10.1016/j.jenvman.2020.110613

    Article  CAS  Google Scholar 

  • Robinson BH, McIvor I (2013) Phytomanagement of contaminated sites using poplars and willows. In: Leung DWM (ed) Recent advances towards improved phytoremediation of heavy metal pollution. Bentham Science, Arab Emirates, pp 119–133

    Chapter  Google Scholar 

  • Robinson BH, Banuelos G, Conesa HM, Evangelou MWH, Schulin R (2009) The phytomanagement of trace elements in soil. Crit Rev Plant Sci 28:240–266. https://doi.org/10.1080/07352680903035424

    Article  CAS  Google Scholar 

  • Rosenkranz T, Hipfinger C, Ridard C, Puschenreiter M (2019) A nickel phytomining field trial using Odontarrhena chalcidica and Noccaea goesingensis on an Austrian serpentine soil. J Environ Manag 242:522–528. https://doi.org/10.1016/j.jenvman.2019.04.073

    Article  CAS  Google Scholar 

  • Sandifer PA, Sutton-Grier AE, Ward BP (2015) Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: opportunities to enhance health and biodiversity conservation. Ecosystem Services 12:1–15. https://doi.org/10.1016/j.ecoser.2014.12.007

    Article  Google Scholar 

  • Schoeneberger M, Bentrup G, de Gooijer H, Soolanayakanahally R, Sauer T, Brandle J, Zhou X, Current D (2012) Branching out: agroforestry as a climate change mitigation and adaptation tool for agriculture. J Soil Water Conserv 67:128A–136A. https://doi.org/10.2489/jswc.67.5.128A

    Article  Google Scholar 

  • Schröder P, Navarro-Aviñó J, Azaizeh H, Goldhirsh AG, DiGregorio S, Komives T, Langergraber G, Lenz A, Maestri E, Memon AR, Ranalli A, Sebastiani L, Smrcek S, Vanek T, Vuilleumier S, Wissing F (2007) Using phytoremediation technologies to upgrade waste water treatment in Europe. Environ Sci Pollut Res 14:490–497

    Article  Google Scholar 

  • Séleck M, Bizoux JP, Colinet G, Faucon MP, Guillaume A, Meerts P, Piqueray J, Mahy G (2013) Chemical soil factors influencing plant assemblages along copper-cobalt gradients: implications for conservation and restoration. Plant Soil 373:455–469

    Article  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194. https://doi.org/10.1016/j.soilbio.2013.01.012

    Article  CAS  Google Scholar 

  • Simek M, Elhottova D, Mench M et al (2017) Greenhouse gas emissions from a Cu-contaminated soil remediated by in situ stabilization and phytomanaged by a mixed stand of poplar, willows, and false indigo-bush. Int J Phytorem 19:976–984. https://doi.org/10.1080/15226514.2016.1267706

    Article  CAS  Google Scholar 

  • Sun M, Fu D, Teng Y, Shen Y, Luo Y, Li Z, Christie P (2011) In situ phytoremediation of PAH-contaminated soil by intercropping alfalfa (Medicago sativa L.) with tall fescue (Festuca arundinacea Schreb.) and associated soil microbial activity. J Soils Sediments 11:980–989. https://doi.org/10.1007/s11368-011-0382

    Article  CAS  Google Scholar 

  • Sura-de Jong M, Reynolds RJ, Richterova K, Musilova L, Hrochova I, Frantik T, Sakmaryova I, Strejcek M, Cochran A, Staicu L, Cappa JJ, van der Lelie D, Pilon-Smits EAH (2015) Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. Front Plant Sci 6:113. https://doi.org/10.3389/fpls.2015.00113

    Article  Google Scholar 

  • Thewys T, Witters N, Meers E, Vangronsveld J (2010) Economic viability of phytoremediation of a cadmium contaminated agricultural area using energy maize. Part II: economics of anaerobic digestion of metal contaminated maize in Belgium. Int J Phytorem 12:663–679. https://doi.org/10.1080/15226514.2010.493188

    Article  CAS  Google Scholar 

  • Touceda-González M, Prieto-Fernández A, Renella G, Giagnoni L, Sessitsch A, Brader G, Kumpiene J, Dimitriou I, Eriksson J, Friesl-Hanl W, Galazka R, Janssen J, Mench M, Müller I, Neu S, Puschenreiter M, Siebielec G, Vangronsveld J, Kidd PS (2017a) Microbial community structure and activity in trace element contaminated soils phytomanaged by Gentle Remediation Options (GRO). Environ Pollut 231:237–251. https://doi.org/10.1016/j.envpol.2017.07.097

    Article  CAS  Google Scholar 

  • Touceda-González M, Álvarez-Lópeza V, Prieto-Fernández A, Rodríguez-Garrido B, Trasar-Cepeda C, Mench M, Puschenreiter M, Quintela-Sabarís C, Macías-García F, Kidd PS (2017b) Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. J Environ Manag 186:301–313. https://doi.org/10.1016/j.jenvman.2016.09.019

    Article  CAS  Google Scholar 

  • Truyens S, Jambon I, Croes S, Janssen J, Weyens N, Mench M, Carleer R, Cuypers A, Vangronsveld J (2014) The effect of long-term Cd and Ni exposure on seed endophytes of Agrostis capillaris and their potential application in phytoremediation of metal-contaminated soils. Int J Phytorem 16:643–659. https://doi.org/10.1080/15226514.2013.837027

    Article  CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Henk Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334. https://doi.org/10.1007/s11104-012-1287

    Article  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2015a) A commentary on “Toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants”. Front Plant Sci 6:1–3. https://doi.org/10.3389/fpls.2015.00554

    Article  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, Echevarria G, Fogliani B, Rongliang Q, Mulligan DR (2015b) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780. https://doi.org/10.1021/es506031u

    Article  CAS  Google Scholar 

  • Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect - systematics and the agony of choice. Biol Conserv 55:235–254

    Article  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res Int 16:765–794. https://doi.org/10.1007/s11356-009-0213-6

    Article  CAS  Google Scholar 

  • Verkerk RHJ, Leather SR, Wright DJ (1998) The potential for manipulating crop-pest-natural enemy interactions for improved insect pest management. Bull Entomol Res 88:493–501

    Article  Google Scholar 

  • Villaverde J, Láiz L, Lara-Moreno A, Gónzalez-Pimentel JL, Morillo E (2019) Bioaugmentation of PAH-contaminated soils with novel specific degrader strains isolated from a contaminated industrial site. Effect of hydroxypropyl-b-cyclodextrin as PAH bioavailabilit enhancer. Front Microbiol 14 November 2019. https://doi.org/10.3389/fmicb.2019.02588

  • Vincent Q, Auclerc A, Beguiristain T, Leyval C (2018) Assessment of derelict soil quality: abiotic, biotic and functional approaches. Sci Total Environ 614-614:990–1002. https://doi.org/10.1016/j.scitotenv.2017.09.118

    Article  CAS  Google Scholar 

  • Wang K, Huang H, Zhu Z, Li T, He Z, Yang X, Alva A (2013) Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass or castor. Int J Phytorem 15:283–298. https://doi.org/10.1080/15226514.2012.694501

    Article  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten W, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  Google Scholar 

  • Weyens N, Truyens S, Saenen E, Boulet J, Dupae J, Taghavi S, Lelie D, Carleer R, Vangronsveld J (2011) Endophytes and their potential to deal with co-contamination of organic contaminants (toluene) and toxic metals (nickel) during phytoremediation. Int J Phytoremediation 13:244–255. https://doi.org/10.1080/15226511003753920

    Article  CAS  Google Scholar 

  • Whiting SN, Reeves RD, Baker AJM (2002) Mining, metallophytes and land reclamation. Min Environ Manag 10:11–16

    Google Scholar 

  • Whiting SN, Reeves RD, Richards DG, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chaney RL, Ginocchio R, Jaffre T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12:106–116. https://doi.org/10.1111/j.1061-2971.2004.00367.x

    Article  Google Scholar 

  • Xue K, Zhou J, Van Nostrand JD, Mench M, Bes C, Giagnoni L, Arenella M, Renella G (2018) Functional activity and functional gene diversity of a Cu-contaminated soil remediated by aided phytostabilization using compost, dolomitic limestone and a mixed tree stand. Environ Pollut 242:229–238. https://doi.org/10.1016/j.envpol.2018.06.057

    Article  CAS  Google Scholar 

  • Yang W, Zhao F, Wang Y, Ding Z, Yang X, Zhu Z (2020a) Differences in uptake and accumulation of copper and zinc by Salix clones under flooded versus non-flooded conditions. Chemosphere 241:125059. https://doi.org/10.1016/j.chemosphere.2019.125059

    Article  CAS  Google Scholar 

  • Yang C, Ho Y-H, Makita R, Inoue C, Chien M-F (2020b) A multifunctional rhizobacterial strain with wide application in different ferns facilitates arsenic phytoremediation. Sci Total Environ 712:134504. https://doi.org/10.1016/j.scitotenv.2019.134504

    Article  CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997. https://doi.org/10.1016/j.chemosphere.2005.12.057

    Article  CAS  Google Scholar 

  • Zeng P, Guo Z, Xiao X, Peng C, Huang B, Feng WL (2019a) Complementarity of co-planting a hyperaccumulator with three metal(loid)-tolerant species for metal(loid)-contaminated soil remediation. Ecotoxicol Environ Saf 169:306–315. https://doi.org/10.1016/j.ecoenv.2018.11.017

    Article  CAS  Google Scholar 

  • Zeng P, Guo ZH, Xiao XY, Peng C, Feng WL, Xin LQ, Xu Z (2019b) Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil. Sci Total Environ 650:594–603. https://doi.org/10.1016/j.scitotenv.2018.09.055

    Article  CAS  Google Scholar 

  • Zhang XB, Liu P, Yang YS, Chen WR (2007) Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. J Environ Sci (China) 19:902–909. https://doi.org/10.1016/S1001-0742(07)60150-8

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Economy, Industry and Competitiveness, Spanish Government (AGL2016-76592-R) and European Union within the Interreg SUDOE (PhytoSUDOE-SOE1/P5/E0189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Garbisu.

Additional information

Responsible Editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garbisu, C., Alkorta, I., Kidd, P. et al. Keep and promote biodiversity at polluted sites under phytomanagement. Environ Sci Pollut Res 27, 44820–44834 (2020). https://doi.org/10.1007/s11356-020-10854-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10854-5

Keywords

Navigation