Skip to main content

Advertisement

Log in

Melanophryniscus admirabilis tadpoles’ responses to sulfentrazone and glyphosate-based herbicides: an approach on metabolism and antioxidant defenses

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Melanophryniscus admirabilis is a frog endemic to the southern Atlantic Forest (Brazil), with restricted distribution and considered as critically endangered. The aim of this study was to evaluate possible alterations in biomarkers of metabolism (glycogen, proteins, and uric acid) and oxidative balance (superoxide dismutase, catalase, glutathione S-transferase, and lipoperoxidation) of tadpoles of Melanophryniscus admirabilis exposed to commercial herbicide formulations containing sulfentrazone (Boral® 500 SC: 130 and 980 μg a.i./L) and glyphosate (Roundup® Original: 234 and 2340 μg a.i./L). Mortality was not observed in any of the groups studied. Our results show that a 96-h exposure to the herbicides decreased glycogen levels, indicating increased energy demand for xenobiotic metabolism. Protein levels increased in the Boral group but decreased in the higher concentration of Roundup, and uric acid levels did not change significantly between the experimental groups. Lipoperoxidation decreased in the Boral group and in the higher concentration of Roundup. Decreased levels of superoxide dismutase in both treatments and of catalase in the lowest concentration of the herbicides were observed. Glutathione S-transferase activity increased in the Roundup group; this enzyme seems to be crucial in the metabolization of the herbicides and in the survival of the tadpoles. Our results suggest that M. admirabilis has a high antioxidant capacity, which guaranteed the survival of tadpoles. Nevertheless, exposure to pesticides could impose a serious risk to this species, especially considering its restricted distribution, habitat specificity, and high physiological demand to metabolize xenobiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adamu KM, Kori-Siakpere O (2011) Effects of sub lethal concentrations of tobacco (Nicotiana tobaccum) leaf dust on some biochemical parameters of hybrid catfish (Clarias gariepinus and Heterobranchus bidorsalis). Braz Arch Biol Technol 54:183–196. https://doi.org/10.1590/S1516-89132011000100023

    Article  Google Scholar 

  • Albinati RCB, Costa GB, Neves AP (1998) Efeito da densidade populacional de girinos de (Rana catesbeiana Shaw, 1802) sobre o tempo de metamorfose e peso do ímagos. Arq Esc Med Vet UFBA 19:75–86

    Google Scholar 

  • Albuquerque AF, Ribeiro JS, Kummrow F, Nogueira AJA, Montagner CC, Umbuzeiro GA (2016) Pesticides in Brazilian freshwaters: a critical review. Environ Sci Process Impacts 18:779–787. https://doi.org/10.1039/c6em00268d

    Article  CAS  Google Scholar 

  • AmphibiaWeb (2020) Amphibian species lists. University of California, Berkeley http://amphibiaweb.org. Accessed 03 July 2020

    Google Scholar 

  • Annett R, Habibi HR, Hontela A (2014) Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J Appl Toxicol 34:458–479. https://doi.org/10.1002/jat.2997

    Article  CAS  Google Scholar 

  • ANVISA—Agência Nacional de Vigilância Sanitaria (2005) Nota técnica sobre livre comércio de agrotóxicos e impactos à saúde humana. http://www.anvisa.gov.br. Accessed 03 July 2020

  • Audo MC, Mann TM, Polk TL, Loudenslager CM, Diehl WJ, Altig R (1995) Food deprivation during different periods of tadpole (Hyla chrysoscelis) ontogeny affects metamorphic performance differently. Oecologia 103:518–522. https://doi.org/10.1007/BF00328691

    Article  CAS  Google Scholar 

  • Avigliano L, Fassiano AV, Medesani DA, De Molina MR, Rodríguez EM (2014) Effects of glyphosate on growth rate, metabolic rate and energy reserves of early juvenile crayfish, Cherax quadricarinatus. M Bull Environ Contam Toxicol 92:631–635. https://doi.org/10.1007/s00128-014-1240-7

    Article  CAS  Google Scholar 

  • Barata C, Lekumberri M, Vila-Escalé M, Prat N, Porte C (2005) Trace metal concentration, antioxidant enzyme activities and susceptibility to oxidative stress in the tricoptera larvae Hydropsyche exocellata from the Llobregat river basin (NE Spain). Aquat Toxicol 74:3–19. https://doi.org/10.1016/j.aquatox.2005.04.002

    Article  CAS  Google Scholar 

  • Beckie HJ, Flower KC, Ashworth MB (2020) Farming without glyphosate? Plants 9. https://doi.org/10.3390/plants9010096

  • Bókony V, Mikó Z, Mórick ÁM, Kruzselvi D, Hettyey A (2017) Chronic exposure to a glyphosate-based herbicide makes toad larvae more toxic. Proc R Soc B 284:20170493. https://doi.org/10.1098/rspb.2017.0493

    Article  CAS  Google Scholar 

  • Botta F, Lavison G, Couturier G, Alliot F, Moreau-Guigon E, Fauchon N, Guery B, Chevreuil M, Blanchoud H (2009) Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems. Chemosphere 77:133–139. https://doi.org/10.1016/j.chemosphere.2009.05.008

    Article  CAS  Google Scholar 

  • Boveris A, Cadenas E (1982) Production of superoxide radicals and hydrogen peroxide in mitochondria. In: Oberley LW (ed) Superoxide dismutase. CRC Press, Florida, pp 15–30

    Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716. https://doi.org/10.1042/bj1340707

    Article  CAS  Google Scholar 

  • Boyland E, Chasseaud LF (1969) The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis. Adv Enzymol Relat Areas Mol Biol 32:172–129. https://doi.org/10.1002/9780470122778.ch5

    Article  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipids peroxidation. Meth Enzymol 52:302–310. https://doi.org/10.1016/S0076-6879(78)52032-6

    Article  CAS  Google Scholar 

  • Collins JP, Storfer A (2003) Global amphibian declines: sorting the hypotheses. Divers Distrib 9:89–98. https://doi.org/10.1046/j.1472-4642.2003.00012.x

    Article  Google Scholar 

  • Couture G, Legris J, Langevin R (1995) Evaluation des impacts du glyphosate utilisedans le milieu forestier. Ministere des Ressources Naturelles, Direction de Penviron- ment forestier, Service du suivi environnemental, Charles- bourg, Quebec, Canada.

  • Coltro ML, Silva PR, Valgas ANN, Miguel C, Freitas BS, Oliveira GT (2017) Influence of the herbicide Facet® on corticosterone levels, plasma metabolites, and antioxidant system in the liver and muscle of American bullfrog tadpoles. Water Air Soil Pollut 228:241. https://doi.org/10.1007/s11270-017-3404-7

    Article  CAS  Google Scholar 

  • CONCEA—Conselho Nacional de Controle de Experimentação Animal (2013) Diretrizes da Prática de Eutanásia do CONCEA. Ministério da Ciência, Tecnologia e Inovação, Brasília

    Google Scholar 

  • Costa MJ, Monteiro DA, Oliveira-Neto AL, Rantin FT, Kalinin AL (2008) Oxidative stress biomarkers and heart function in bullfrog tadpoles exposed to roundup original. Ecotoxicology 17:153–163. https://doi.org/10.1007/s10646-007-0178-5

    Article  CAS  Google Scholar 

  • Costantini D (2014) Oxidative stress and hormesis in evolutionary ecology and physiology. Springer, New York

    Book  Google Scholar 

  • Dowling DK, Simmons LW (2009) Reactive oxygen species as universal constraints in life-history evolution. Proceedings of the Royal Society B: Biological Sciences 276 (1663):1737–1745

    Article  CAS  Google Scholar 

  • Di-Bernardo M, Maneyro R, Grillo H (2006) New species of Melanophryniscus (Anura: Bufonidae) from Rio Grande do Sul, Southern Brazil. J Herpetol 40:261–266. https://doi.org/10.1670/05-008.1

    Article  Google Scholar 

  • Dornelles MF, Oliveira GT (2014) Effect of atrazine, glyphosate, and quinclorac on biochemical parameters, lipid peroxidation and survival in bullfrog tadpoles (Lithobates catesbeianus). Arch Envirom Contam Toxicol 66:415–429. https://doi.org/10.1007/s00244-013-9967-4

    Article  CAS  Google Scholar 

  • Dornelles MF, Oliveira GT (2016) Toxicity of atrazine, glyphosate, and quinclorac in bullfrog tadpoles exposed to concentrations below legal limits. Environ Sci Pollut Res 23:610–1620. https://doi.org/10.1007/s11356-015-5388-4

    Article  CAS  Google Scholar 

  • Dutra de Armas E, Rosim Monteiro RT, Valler Amâncio A, Lopes Correa RM, Guercio MA (2005) Uso de agrotóxicos em cana-de-açúcar na bacia do rio Corumbataí e o risco de poluição hídrica. Quim Nova 28:975–982. https://doi.org/10.1590/S0100-40422005000600008

    Article  Google Scholar 

  • Edwards W M, Triplett G B, Kramer RM (1980) A watershed study of glyphosate transport in runoff. J. Environ. Qual., 9, 661-665

  • Emater-RS. 2001. Relatório de ações e resultados 2001. Escritório municipal de Arvorezinha – RS.

  • Endemann M, Hristoforoglu K, Stauber TE, Wilhelm E (2001) Assessment of age-related polyploidy in Quercus robur L. somatic embryos and regenerated plants using DNA flow cytometry. Biol Plant 44:339–345. https://doi.org/10.1023/A:1012426306493

    Article  Google Scholar 

  • Ezemonye L, Tongo I (2009) Lethal and sublethal effects of atrazine to amphibian larvae. Jordan J Biol Sci 2:29–36

    Google Scholar 

  • Fonte LFM, Abadie M, Mendes T, Zank C, Borges-Martins M (2014) The times they are a-changing: how a multi-institutional effort stopped the construction of a hydroelectric power plant that threatened a critically endangered red-belly toad in southern Brazil. FrogLog 22:18–21

    Google Scholar 

  • Freitas JS, Teresa FB, de Almeida EA (2017) Influence of temperature on the antioxidant responses and lipid peroxidation of two species of tadpoles (Rhinella schneideri and Physalaemus nattereri) exposed to the herbicide sulfentrazone (Boral 500SC®). Comp Biochem Phys C Toxicol Pharmacol 197:32–44

    Article  CAS  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell-cycle in intact plant-tissues. Science 220:1049–1051

  • Gehrke VR, Camargo ER, Avilla LA (2020) Sulfentrazone: Environmental Dynamics and Selectivity. Planta Daninha 38

  • Gill JPK, Sethi N, Mohan A, Datta S, Girdhar M (2018) Glyphosate toxicity for animals. Environ Chem Lett 16:401–426. https://doi.org/10.1007/s10311-017-0689-0

  • Gosner KLA (1960) Simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

  • Govindarajulu PP (2008) Literature review of impacts of glyphosate herbicide on amphibians: what risks can the silvicultural use of this herbicide pose for amphibians in BC? B.C. Ministry of Environment, Victoria, BC Wildlife Report No. R-28

  • Grant T, Colombo P, Verrastro L, Saporito RA (2012) The occurrence of defensive alkaloids in non-integumentary tissues of the Brazilian red-belly toad Melanophryniscus simplex (Bufonidae). Chemoecology 22(3):169–178. https://doi.org/10.1007/s00049-012-0107-9

  • Gripp HS, Freitas JS, Almeida EA, Bisinoti MC, Moreira AB (2017) Biochemical effects of fipronil and its metabolites on lipid peroxidation and enzymatic antioxidant defense in tadpoles (Eupemphix nattereri: Leiuperidae). Ecotoxicol Environ Saf 136:173–179. https://doi.org/10.1016/j.ecoenv.2016.10.027

  • Grube A, Donaldson D, Kiely T, Wu L (2011) Pesticides industry sales and usage. US EPA, Washington, DC

  • Guo H, Yin L, Zhang S, Feng W (2010) The toxic mechanism of high lethality of herbicide butachlor in marine flatfish flounder, Paralichthys olivaceus. J Ocean Univ China 9:257–264. https://doi.org/10.1007/s11802-010-1693-1

  • Habig WH, Jakoby WB (1981) Glutathione S-transferases (rat and human). Meth Enzymol 77:218–234. https://doi.org/10.1016/S0076-6879(81)77029-0

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hantak MM, Grant T, Reinsch S, Loring M, Toyooka N, Saporito RA (2013) Dietary alkaloid sequestration in a poison frog: an experimental test of alkaloid uptake in Melanophryniscus stelzneri (Bufonidae). J Chem Ecol 39:1400–1406. https://doi.org/10.1007/s10886-013-0361-5

    Article  CAS  Google Scholar 

  • Hazarika A, Sarkar SN, Hajare S, Kataria M, Malik JK (2003) Influence of malathion pretreatment on the toxicity of anilofos in male rats: a biochemical interaction study. Toxicology 185:1–8. https://doi.org/10.1016/S0300-483X(02)00574-7

    Article  CAS  Google Scholar 

  • Hermes-Lima M (2004) Oxygen in biology and biochemistry: role of free radicals. In: Storey KB (ed) Functional metabolism: regulation and adaptation. Hoboken, New York, pp 319–368

    Google Scholar 

  • ICMBio—Instituto Chico Mendes de Conservação da Biodiversidade (2012) Sumário Executivo do Plano de Ação Nacional para Conservação de Répteis e Anfíbios Ameaçados da Região Sul do Brasil. Centro Nacional de Pesquisa e Conservação de Répteis e Anfíbios (RAN), Brasília http://www.icmbio.gov.br/portal/images/stories/docs-plano-de-acao/pan-herpetofauna-sul/sumarioherpetofaunasul-web.pdf. Accessed 03 July 2020

    Google Scholar 

  • ICMBio—Instituto Chico Mendes de Conservação da Biodiversidade (2018). Livro Vermelho da Fauna Brasileira Ameaçada de Extinção: Volume V—Anfíbios. In: Instituto Chico Mendes de Conservação da Biodiversidade (Org.). Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. Brasília: ICMBio

  • IUCN (2013) The International Union for Conservation of Nature. Amphibians on the IUCN red list of threatened species. http://www.iucnredlist.org. Accessed 03 July 2020

  • Jeckel MA, Grant T, Saporito RA (2015) Sequestered and synthesized chemical defenses in the poison frog Melanophryniscus moreirae. J Chem Ecol 41:505–512. https://doi.org/10.1007/s10886-015-0578-6

    Article  CAS  Google Scholar 

  • Jones L, Gossett DR, Banks SW, McCallum ML (2010) Antioxidant defense system in tadpoles of the American bullfrog (Lithobates catesbeianus) exposed to paraquat. J Herpetol 44:222–228. https://doi.org/10.1670/07-243.1

    Article  Google Scholar 

  • Legris J, Couture G (1989) Residus de glyphosate dans l'eau et les sediments suite a des pulverisations terrestres en milieu forestier en 1986. Publication #3322. Gouvernement du Quebec, Ministere de l'Energie et des Ressources, Direction de la Conservation, Charlesbourg, Quebec, Canada

  • Lima ES, Abdalla DSP (2001) Peroxidação lipídica: mecanismos e avaliação em amostras biológicas. Braz J Pharm Sci 37:293–303

  • Llesuy SF, Milei J, Molina H, Boveris A, Milei S (1985) Comparison of lipid peroxidation and myocardia damage induced by adriamycin and 4′-epiadrimicin in mice. Tumor 71:241–249

  • Marcelo Hermes-Lima, Kenneth B. Storey, (1993) In vitro oxidative inactivation of glutathione S-transferase from a freeze tolerant reptile. Molecular and Cellular Biochemistry 124 (2):149-158

  • Margarido TCS, Felicio AA, Rossa-Feres DC, Almeida EA (2013) Biochemical biomarkers in Scinax fuscovarius tadpoles exposed to a commercial formulation of the pesticide fipronil. Mar Environ Res 91:61–67. https://doi.org/10.1016/j.marenvres.2013.02.001

  • Melo CAD, Medeiros WN, Tuffi Santos LD, Ferreira FA, Ferreira GL, Paes FASV, Reis MR (2010) Residual effect of sulfentrazone, isoxaflutole and oxyfluorfen in three soils. Planta Daninha 28:835–842. https://doi.org/10.1590/S0100-83582010000400017

  • Menon J, Rozman R (2007) Oxidative stress, tissue remodeling and regression during amphibian metamorphosis. Comp Biochem Physiol C Toxicol Pharmacol 145:625–631. https://doi.org/10.1016/j.cbpc.2007.02.011

  • Miller JI (1997) Pesticide fact sheet, registration of a new chemical. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Modesto KA, Martinez CBR (2010) Roundup® causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere 78:294–299. https://doi.org/10.1016/j.chemosphere.2009.10.047

    Article  CAS  Google Scholar 

  • Monaghan P, Neil B, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecology Letters 12:75–92. https://doi.org/10.1111/j.1461-0248.2008.01258.x

    Article  Google Scholar 

  • Montgomery MP, Kamel F, Saldana TM, Alavanja MCR, Sandler DP (2008) Incident diabetes and pesticide exposure among licensed pesticide applicators: agricultural health study 1993–2003. Am J Epidemiol 167:1235–1246. https://doi.org/10.1093/aje/kwn028

    Article  CAS  Google Scholar 

  • Moutinho MF, de Almeida ED, Espíndola ELG, Daam MA, Schiesari L (2020) Herbicides employed in sugarcane plantations have lethal and sublethal effects to larval Boana pardalis (Amphibia, Hylidae). Ecotoxicology. https://doi.org/10.1007/s10646-020-02226-z

  • Newton M, Horner LM, Cowell JE, White DE, Cole EC (1994) Dissipation of Glyphosate and Aminomethylphosphonic Acid in North American Forests. Journal of Agricultural and Food Chemistry 42 (8):1795-1802

  • Nunes C, Silva A, Soares E, Ganias K (2011) The use of hepatic e somatic indices e histological information to characterize the reproductive dynamics of Atlantic sardine Sardina pilchardus from the Portuguese coast. Mar. Coast. Fish. 3: 127-144

  • Ojha A, Yaduvanshi SK, Srivastava N (2011) Effect of combined exposure of commonly used organophosphate pesticides on lipid peroxidation and antioxidant enzymes in rat tissues. Pestic Biochem Physiol 99:148–156. https://doi.org/10.1016/j.pestbp.2010.11.011

    Article  CAS  Google Scholar 

  • Orlofske SA, Hopkins WA (2009) Energetics of metamorphic climax in the pickerel frog (Lithobates palustris). Comp Biochem Physiol A Mol Integr Physiol 154:191–196. https://doi.org/10.1016/j.cbpa.2009.06.001

    Article  CAS  Google Scholar 

  • Oruç EÖ, Usta D (2007) Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environ Toxicol Pharmacol 23:48–55. https://doi.org/10.1016/j.etap.2006.06.005

    Article  CAS  Google Scholar 

  • Peres F, Moreira JC (2003) É veneno ou é remédio? Agrotóxicos, saúde e ambiente. SciELO—Editora Fiocruz, Rio de Janeiro

    Book  Google Scholar 

  • Pérez GL, Vera MS, Miranda LA (2011) Effects of herbicide glyphosate and glyphosate-based formulations on aquatic ecosystems. In: Kortekamp A (ed) Herbicides and environment. https://www.intechopen.com/books/herbicides-and-environment/effects-of-herbicide-glyphosate-and-glyphosate-based-formulations-on-aquatic-ecosystems. Accessed 18 July 2020

  • Persch TSP, Weimer RN, Freitas BS, Oliveira GT (2017) Metabolic parameters and oxidative balance in juvenile Rhamdia quelen exposed to rice paddy herbicides: Roundup®, Primoleo®, and Facet®. Chemosphere 174:98–109. https://doi.org/10.1016/j.chemosphere.2017.01.092

    Article  CAS  Google Scholar 

  • Persch TSP, Silva PR, dos Santos SHD, de Freitas BS, Oliveira GT (2018) Changes in intermediate metabolism and oxidative balance parameters in sexually matured three-barbeled catfishes exposed to herbicides from rice crops (Roundup®, Primoleo® and Facet®). Environ Toxicol Pharmacol 58:170–179. https://doi.org/10.1016/j.etap.2018.01.004

    Article  CAS  Google Scholar 

  • Peruzzo PJ, Porta AA, Ronco AE (2008) Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in North Pampasic region of Argentina. Environ Pollut 156:61–66. https://doi.org/10.1016/j.envpol.2008.01.015

    Article  CAS  Google Scholar 

  • Relyea RA (2005) The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol Appl 15:618–627. https://doi.org/10.1890/03-5342

    Article  Google Scholar 

  • Rodrigues BN, de Almeida FS (1998) Guia de herbicidas. Iapar, São Paulo

    Google Scholar 

  • Santos EA, Correia MN, Silva JRM, Velini ED, Passos ABRJ, Durigan JC (2015) Herbicide detection in groundwater in Córrego Rico-SP watershed. Planta Daninha 33(1):147–155. https://doi.org/10.1590/S0100-83582015000100017

    Article  Google Scholar 

  • Santos JC, Tarvin RD, O’Connell LA (2016a) A review of chemical defense in poison frogs (Dendrobatidae): ecology, pharmacokinetics, and autoresistance. In: Buesching CD (ed) Chemical signals in vertebrates. Springer, New York

    Google Scholar 

  • Santos LFJ, Oliveira-Bahia VRL, Nakaghi LSO, De Stefani MV, Gonçalves AM, Pizauro Junior JM (2016b) Ontogeny of the digestive enzymes of tadpoles of Lithobates catesbeianus. Copeia 104(4):838–842. https://doi.org/10.1643/CG-16-432

    Article  Google Scholar 

  • Schier M, Chandel N (2014) Function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462. https://doi.org/10.1016/j.cub.2014.03.034

    Article  CAS  Google Scholar 

  • Schiesari L, Grillitsch B, Grillitsch H (2007) Biogeographic biases in research and their consequences for linking amphibian declines to pollution. Conserv Biol 21:465–471. https://doi.org/10.1111/j.1523-1739.2006.00616.x

    Article  Google Scholar 

  • Segalla MV, Caramaschi U, Cruz CAG, Grant T, Haddad CFB, Garcia PCA, Berneck BVM, Langone JA (2016) Brazilian amphibians—list of species. Herpetol Bras 3:37–48

    Google Scholar 

  • Sies H (2018) On the history of oxidative stress: Concept and some aspects of current development. Current Opinion in Toxicology 7:122–126

    Article  Google Scholar 

  • SINDAG—Sindicato Nacional das Indústrias de Defensivos Agrícolas (2011) Dados de produção e consumo de agrotóxicos. http://www.sindag.com.br. Accessed 03 July 2020

  • STATISTICA Enterprise- Statsoft South America. Software Statistica. Statsoft, v.6.0, 2011

  • Strong RJ, Halsall CJ, Ferenčík M, Jones KC, Shore RF, Martin FL (2016) Biospectroscopy reveals the effect of varying water quality on tadpole tissues of the common frog (Rana temporaria). Environ Pollut 213:322–337. https://doi.org/10.1016/j.envpol.2016.02.025

    Article  CAS  Google Scholar 

  • Sun Y, Yin G, Zhang J, Yu H, Wang X (2007) Bioaccumulation and ROS generation in liver of freshwater fish, goldfish Carassius auratus under HC Orange no. 1 exposure. Environ Toxicol 22:256–263. https://doi.org/10.1002/tox.20262

    Article  CAS  Google Scholar 

  • Taysse L, Chambras C, Marionnet D, Bosgiraud C, Deschaux P (1998) Basal level and induction of cytochrome P450, EROD, UDPGT, and GST activities in carp (Cyprinus carpio) immune organs (spleen and head kidney). Bull Environ Contam Toxicol 60:300–305. https://doi.org/10.1007/s001289900625

    Article  CAS  Google Scholar 

  • Thorngren JL, Harwood AD, Murphy TM, Hartz KEH, Fung CY, Lydy MJ (2017) Fate and risk of atrazine and sulfentrazone to nontarget species at an agriculture site. Environ Toxicol and Chem 36(5):1301–1310. https://doi.org/10.1002/etc.3664

    Article  CAS  Google Scholar 

  • Tsahar E, Arad Z, Izhaki I, Guglielmo CG (2006) The relationship between uric acid and its oxidative product allantoin: a potential indicator for the evaluation of oxidative stress in birds. J Comp Physiol B Biochem Syst Environ Physiol 176:653–661. https://doi.org/10.1007/s00360-006-0088-5

    Article  CAS  Google Scholar 

  • Umminger BL (1977) Relation of whole blood sugar concentration in vertebrate to standard metabolic rate. Comp Biochem Physiol—Part A Physiol 56:457–460. https://doi.org/10.1016/0300-9629(77)90267-5

    Article  CAS  Google Scholar 

  • Van Handel E (1965) Estimation of glycogen in small amount soft tissue. Anal Biochem 11:256–265

    Article  Google Scholar 

  • van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology 13 (2):57-149

  • Vasconcellos M A de (2015) Conservação do sapinho-admirável-de-barriga-vermelha, Melanophryniscus admirabilis (anura: bufonidae) : estudo de ecologia populacional. Dissertation, Universidade Federal do Rio Grande do Sul

  • Wagner N, Reichenbercher W, Teichmann Z, Tappeser B, Lottersy S (2013) Questions concerning the potential impact of glyphosate-based herbicides on amphibians. Environ Toxicol Chem 32(8):1688–1700. https://doi.org/10.1002/etc.2268

    Article  CAS  Google Scholar 

  • Walker CH (2014) Ecotoxicology: effects of pollutants on the natural environment. CRC Press, New York

    Book  Google Scholar 

  • Wilkens ALL, Valgas AAN, Oliveira GT (2019) Effects of ecologically relevant concentrations of Boral® 500 SC, Glifosato® Biocarb, and a blend of both herbicides on markers of metabolism, stress, and nutritional condition factors in bullfrog tadpoles. Environ Sci Poll Res 26:23242–23256. https://doi.org/10.1007/s11356-019-05533-z

    Article  CAS  Google Scholar 

  • Yin X, Jiang S, Yu J, Zhu G, Wu H, Mao C (2014) Effects of spirotetramat on the acute toxicity, oxidative stress, and lipid peroxidation in Chinese toad (Bufo bufo gargarizans) tadpoles. Environ Toxicol Pharmacol 37:1229–1235. https://doi.org/10.1016/j.etap.2014.04.016

    Article  CAS  Google Scholar 

  • Zanette J, Monserrat JM, Bianchini A (2015) Biochemical biomarkers in barnacles Balanus improvisus: pollution and seasonal effects. Mar Environ Res 103:74–79. https://doi.org/10.1016/j.marenvres.2014.11.001

    Article  CAS  Google Scholar 

  • Zhang W, Chen L, Xu Y, Deng Y, Zhang L, Qin Y, Wang Z, Liu R, Zhou Z, Diao J (2019) Amphibian (Rana nigromaculata) exposed to cyproconazole: changes in growth index, behavioral endpoints, antioxidant biomarkers, thyroid and gonad development. Aquat Toxicol 208:62–70. https://doi.org/10.1016/j.aquatox.2018.12.015

    Article  CAS  Google Scholar 

  • Zhu L, Mu X, Wang K, Chai T, Yang Y, Qiu L, Wang C (2015) Cyhalofop-butyl has the potential to induce developmental toxicity, oxidative stress and apoptosis in early life stage of zebrafish (Danio rerio). Environ Pollut 203:40–49. https://doi.org/10.1016/j.envpol.2015.03.044

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Michelle Abadie, Thayná Mendes, Juliane Heyde, and Matheus Kingeski for their sample support and information on the species studied, and Luis Esteban Krause Lanes (PUCRS) for his valuable help in the statistical analysis of the work. We thank the Fundação Grupo O Boticário and RAN/ICMBio for their financial and logistical support and the National Council for Scientific and Technological Development (CNPq) for granting a master’s degree grant to the first author and for providing a productivity grant to the corresponding author.

Funding

This study was funded by the Fundação Grupo O Boticário and RAN/ICMBio, the National Council for Scientific and Technological Development (CNPq) (case number 307071/2015-4), and the Higher Education Personnel Improvement Coordination—Brazil (CAPES) (Financial Code 001).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Guendalina Turcato Oliveira, Márcio Borges-Martins, and Patrícia Rodrigues da Silva. Data curation: Guendalina Turcato Oliveira, Márcio Borges-Martins, and Patrícia Rodrigues da Silva. Formal analysis: Guendalina Turcato Oliveira, Márcio Borges-Martins, and Patrícia Rodrigues da Silva. Funding acquisition: Guendalina Turcato Oliveira and Márcio Borges-Martins. Investigation: Guendalina Turcato Oliveira and Patrícia Rodrigues da Silva. Methodology: Guendalina Turcato Oliveira, Márcio Borges-Martins, and Patrícia Rodrigues da Silva. Project administration: Guendalina Turcato Oliveira. Resources: Guendalina Turcato Oliveira and Márcio Borges-Martins. Software: Guendalina Turcato Oliveira. Supervision: Guendalina Turcato Oliveira and Márcio Borges-Martins. Validation: Guendalina Turcato Oliveira and Márcio Borges-Martins. Visualization: Guendalina Turcato Oliveira, Márcio Borges-Martins, and Patrícia Rodrigues da Silva. Writing—original draft: Guendalina Turcato Oliveira, Márcio Borges-Martins, and Patrícia Rodrigues da Silva. Writing—review and editing: Guendalina Turcato Oliveira, Márcio Borges-Martins, and Patrícia Rodrigues da Silva.

Corresponding author

Correspondence to Guendalina Turcato Oliveira.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

All procedures involving animals were authorized by the Committee on Animal Research and Ethics from the Pontifícia Universidade Católica do Rio Grande do Sul (CEUA/PUCRS) (Permit n° 6879). Sampling size and procedures were authorized by the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio/SISBio) (Permit n° 40004-4) and followed the legal precepts of the Federative Republic of Brazil.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Tadpoles were exposed to commercial herbicide formulations containing sulfentrazone and glyphosate.

• Mortality was not observed.

• Glycogen has been mobilized as an energy substrate for the detoxification process.

• Only uric acid levels and catalase activity did not vary significantly.

• No increase in lipid peroxidation was observed in any of the herbicides.

• GST increases at all herbicide concentrations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, P.R., Borges-Martins, M. & Oliveira, G.T. Melanophryniscus admirabilis tadpoles’ responses to sulfentrazone and glyphosate-based herbicides: an approach on metabolism and antioxidant defenses. Environ Sci Pollut Res 28, 4156–4172 (2021). https://doi.org/10.1007/s11356-020-10654-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10654-x

Keywords

Navigation