Skip to main content

Advertisement

Log in

Herbicides based on 2,4-D: its behavior in agricultural environments and microbial biodegradation aspects. A review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

One of the main herbicides used in the agricultural environments is 2,4-dichlorophenoxyacetic acid (2,4-D). It is a synthetic plant hormone auxin employed in many crops including rice, wheat, sorghum, sugar cane, and corn to control wide leaf weeds. The indiscriminate use of pesticides can produce numerous damages to the environment. Therefore, this review has the objective to provide an overview on the main characteristics of the herbicides based on 2,4-D, mostly on the role of microorganisms in its degradation and its main degradation metabolite, 2,4- dichlorophenol (2,4-DCP). The remediation processes carried out by microorganisms are advantageous to avoid the pollution of the environment as well as to safeguard the population health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarry SE, Oghenejoboh KM, Oghenejoboh EO et al (2020) Adsorptive remediation of crude oil contaminated marine water using chemically and thermally modified coconut (Cocos nucifera) husks. J Environ Treat Tech 8:694–707

  • APVMA (2006) The reconsideration of approvals of the active constituent 2,4-D, registrations of products containing 2,4-D and their associated labels

  • Arévalo Hernández A, Reynoso SIlva M, Álvarez Moya C (2011) Compuestos organo-persistentes y daño genético en núcleos hepáticos de <i>Goodea atripinnis<i/> del Lago de Chapala. Sci-CUCBA 13:1–8

    Google Scholar 

  • Bending GD, Turner MK, Jones JE (2002) Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biol Biochem 34:1073–1082. https://doi.org/10.1016/S0038-0717(02)00040-8

    Article  CAS  Google Scholar 

  • Benli ÇK, Şahin D, Sarikaya R, et al (2016) The sublethal effects of (2,4-dichlorophenoxy) acetic acid (2,4-D) on narrow-clawed crayfish ( Astacus leptodactylus Eschscholtz, 1823). Arch Ind Hyg Toxicol 64

  • Benndorf D, Thiersch M, Loffhagen N, Kunath C, Harms H (2006) Pseudomonas putida KT2440 responds specifically to chlorophenoxy herbicides and their initial metabolites. Proteomics 6:3319–3329. https://doi.org/10.1002/pmic.200500781

    Article  CAS  Google Scholar 

  • Bernat P, Nykiel-Szymańska J, Stolarek P, Słaba M, Szewczyk R, Różalska S (2018) 2,4-dichlorophenoxyacetic acid-induced oxidative stress: Metabolome and membrane modifications in Umbelopsis isabellina, a herbicide degrader. PLoS One 13:e0199677. https://doi.org/10.1371/journal.pone.0199677

    Article  CAS  Google Scholar 

  • Bharadwaj A (2018) Bioremediation of xenobiotics: an eco-friendly cleanup approach. In: Green chemistry in environmental sustainability and chemical education. Springer Singapore, Singapore, pp. 1–13

  • Bhosle NP, Thore AS (2016) Biodegradation of the herbicide 2 , 4-D by some fungi. Am J Agric Enviro Sci 16:1666–1671. https://doi.org/10.5829/idosi.aejaes.2016.1666.1671

    Article  CAS  Google Scholar 

  • Boivin A, Amellal S, Schiavon M, van Genuchten MT (2005) 2,4-dichlorophenoxyacetic acid (2,4-D) sorption and degradation dynamics in three agricultural soils. Environ Pollut 138:92–99. https://doi.org/10.1016/J.ENVPOL.2005.02.016

    Article  CAS  Google Scholar 

  • Bortolozzi A, Duffard R, de Duffard AME (2003) Asymmetrical development of the monoamine systems in 2,4-dichlorophenoxyacetic acid treated rats. Neurotoxicology 24:149–157. https://doi.org/10.1016/S0161-813X(02)00156-0

    Article  CAS  Google Scholar 

  • Botero LR, Mougin C, Peñuela G, Barriuso E (2017) Formation of 2,4-D bound residues in soils: new insights into microbial metabolism. Sci Total Environ 584–585:715–722. https://doi.org/10.1016/j.scitotenv.2017.01.105

    Article  CAS  Google Scholar 

  • Carboneras B, Villaseñor J, Fernandez-Morales FJ (2017) Modelling aerobic biodegradation of atrazine and 2,4-dichlorophenoxy acetic acid by mixed-cultures. Bioresour Technol 243:1044–1050. https://doi.org/10.1016/j.biortech.2017.07.089

    Article  CAS  Google Scholar 

  • Castillo M d P, Torstensson L, Stenström J (2008) Biobeds for environmental protection from pesticide use: a review. J Agric Food Chem 56:6206–6219. https://doi.org/10.1021/jf800844x

    Article  CAS  Google Scholar 

  • Chang Y-C, Reddy MV, Umemoto H et al (2015) Bio-augmentation of Cupriavidus sp. CY-1 into 2,4-D contaminated soil: microbial community analysis by culture dependent and independent techniques. PLoS One 10:e0145057. https://doi.org/10.1371/journal.pone.0145057

    Article  CAS  Google Scholar 

  • Charles JM, Hanley TR, Wilson RD, van Ravenzwaay B, Bus JS (2001) Developmental toxicity studies in rats and rabbits on 2,4-dichlorophenoxyacetic acid and its forms. Toxicol Sci 60:121–131. https://doi.org/10.1093/toxsci/60.1.121

    Article  CAS  Google Scholar 

  • Cho Y-S, Park S-H, Kim C-K, Oh K-H (2000) Induction of stress shock proteins DnaK and GroEL by phenoxyherbicide 2,4-D in Burkholderia sp. YK-2 isolated from rice field. Curr Microbiol 41:33–38. https://doi.org/10.1007/s002840010087

    Article  CAS  Google Scholar 

  • Colosio C, Moretto A (2008) Pesticides. In: Heggenhougen K, Quah S (eds) . International encyclopedia of public health, San Diego, pp 59–66

    Google Scholar 

  • Correia FV, Moreira JC (2010) Effects of glyphosate and 2,4-D on earthworms (Eisenia foetida) in laboratory tests. Bull Environ Contam Toxicol 85:264–268. https://doi.org/10.1007/s00128-010-0089-7

    Article  CAS  Google Scholar 

  • Czaplicka M (2004) Sources and transformations of chlorophenols in the natural environment. Sci Total Environ 322:21–39. https://doi.org/10.1016/J.SCITOTENV.2003.09.015

    Article  CAS  Google Scholar 

  • Devault DA, Karolak S (2020) Wastewater-based epidemiology approach to assess population exposure to pesticides: a review of a pesticide pharmacokinetic dataset. Environ Sci Pollut Res 27:4695–4702

    Article  CAS  Google Scholar 

  • Ensminger MP, Budd R, Kelley KC, Goh KS (2013) Pesticide occurrence and aquatic benchmark exceedances in urban surface waters and sediments in three urban areas of California, USA, 2008–2011. Environ Monit Assess 185:3697–3710. https://doi.org/10.1007/s10661-012-2821-8

    Article  CAS  Google Scholar 

  • EPA U, Risk Information System Division I (2008) 2,4-Dichlorophenoxyacetic acid (2,4-D) (CASRN 94–75-7) | IRIS | US EPA

  • Faulkner JK, Woodcock D (1965) Fungal detoxication. Part VII. Metabolism of 2,4-dichloro-phenoxyacetic and 4-chloro-2-methylphenoxyacetic acids by Aspergillus niger. J Chem Soc 1187–1191. https://doi.org/10.1039/jr9650001187

  • Fent K (2003) Ecotoxicological problems associated with contaminated sites. Toxicol Lett 140–141:353–365. https://doi.org/10.1016/S0378-4274(03)00032-8

    Article  CAS  Google Scholar 

  • Ferreira-Guedes S, Mendes B, Leitão AL (2012) Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: antibiotic production. Environ Technol 33:677–686. https://doi.org/10.1080/09593330.2011.588251

    Article  CAS  Google Scholar 

  • Forti JC, Loretti GH, Tadayozzi YS, de Andrade AR (2020) A phytotoxicity assessment of the efficiency 2,4-D degradation by different oxidative processes. J Environ Manag 266:110588. https://doi.org/10.1016/j.jenvman.2020.110588

    Article  CAS  Google Scholar 

  • Ganguli A, Choudhury D, Chakrabarti G (2014) 2,4-Dichlorophenoxyacetic acid induced toxicity in lung cells by disruption of the tubulin-microtubule network. Toxicol Res (Camb) 3:118. https://doi.org/10.1039/c3tx50082a

    Article  CAS  Google Scholar 

  • Geed SR, Prasad S, Kureel MK, Singh RS, Rai BN (2018) Biodegradation of wastewater in alternating aerobic-anoxic lab scale pilot plant by Alcaligenes sp. S 3 isolated from agricultural field. J Environ Manag 214:408–415

    Article  CAS  Google Scholar 

  • Gonod LV, Chenu C, Soulas G (2003) Spatial variability of 2,4-dichlorophenoxyacetic acid (2,4-D) mineralisation potential at a millimetre scale in soil. Soil Biol Biochem 35:373–382. https://doi.org/10.1016/S0038-0717(02)00287-0

    Article  CAS  Google Scholar 

  • González AJ, Gallego A, Gemini VL, Papalia M, Radice M, Gutkind G, Planes E, Korol SE (2012) Degradation and detoxification of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) by an indigenous Delftia sp. strain in batch and continuous systems. Int Biodeterior Biodegrad 66:8–13. https://doi.org/10.1016/j.ibiod.2011.09.010

    Article  CAS  Google Scholar 

  • Grossmann K (2003) Mediation of herbicide effects by hormone interactions. J Plant Growth Regul 22:109–122. https://doi.org/10.1007/s00344-003-0020-0

    Article  CAS  Google Scholar 

  • Hattab S, Boughattas I, Boussetta H, Viarengo A, Banni M, Sforzini S (2015) Transcriptional expression levels and biochemical markers of oxidative stress in the earthworm Eisenia andrei after exposure to 2,4-dichlorophenoxyacetic acid (2,4-D). Ecotoxicol Environ Saf 122:76–82. https://doi.org/10.1016/j.ecoenv.2015.07.014

    Article  CAS  Google Scholar 

  • Hausinger RP (2015) Biochemical diversity of 2-oxoglutarate-dependent oxygenases. In: Hausinger RP, Schofield CJ (eds) In 2-Oxoglutarate-dependent oxygenases. pp 1–58

  • Hiran S, Kumar S (2017) 2, 4- dichlorophenoxyacetic acid poisoning; case report and literature review. Mashhad Univ Med Sci 6:29–33. https://doi.org/10.22038/APJMT.2017.8475

    Article  Google Scholar 

  • Hou J, Liu F, Wu N, Ju J, Yu B (2016) Efficient biodegradation of chlorophenols in aqueous phase by magnetically immobilized aniline-degrading Rhodococcus rhodochrous strain. J Nanobiotechnol 14:5. https://doi.org/10.1186/s12951-016-0158-0

    Article  CAS  Google Scholar 

  • Huang X, He J, Yan X, Hong Q, Chen K, He Q, Zhang L, Liu X, Chuang S, Li S, Jiang J (2017) Microbial catabolism of chemical herbicides: microbial resources, metabolic pathways and catabolic genes. Pestic Biochem Physiol 143:272–297. https://doi.org/10.1016/j.pestbp.2016.11.010

    Article  CAS  Google Scholar 

  • Hütsch BW (2001) Methane oxidation in non-flooded soils as affected by crop production — invited paper. Eur J Agron 14:237–260. https://doi.org/10.1016/S1161-0301(01)00110-1

    Article  Google Scholar 

  • Igbinosa EO, Ajisebutu SO, Okoh AI (2017a) Studies on aerobic biodegradation activities of 2,4-dichlorophenoxyacetic acid by bacteria species isolated from petroleum polluted site. Afr J Biotechnol 6:1426–1431

    Google Scholar 

  • Igbinosa EO, Ajisebutu SO, Okoh AI (2017b) Aerobic dehalogenation activities of two petroleum degrading bacteria. Afr J Biotechnol 6:897–901

    Google Scholar 

  • Ikehata K, Nicell JA (2000) Color and toxicity removal following tyrosinase-catalyzed oxidation of phenols. Biotechnol Prog 16:533–540. https://doi.org/10.1021/bp0000510

    Article  CAS  Google Scholar 

  • Islam F, Wang J, Farooq MA, Khan MSS, Xu L, Zhu J, Zhao M, Muños S, Li QX, Zhou W (2018) Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environ Int 111:332–351. https://doi.org/10.1016/j.envint.2017.10.020

    Article  CAS  Google Scholar 

  • Itoh K, Hayashi S, Sano T et al (2016) 2,4-Dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading gene cluster in the soybean root-nodulating bacterium Bradyrhizobium elkanii USDA94. Microbiol Res 188–189:62–71. https://doi.org/10.1016/j.micres.2016.04.014

    Article  CAS  Google Scholar 

  • Javaid MK, Ashiq M, Tahir M (2016) Potential of biological agents in decontamination of agricultural soil. Scientifica (Cairo) 2016:1–9. https://doi.org/10.1155/2016/1598325

    Article  CAS  Google Scholar 

  • Joshi N, Gupta D (2008) Soil mycofloral responses following the exposure to 2, 4-D. J Environ Biol 29:211–214

    CAS  Google Scholar 

  • Ju Z, Liu SS, Xu YQ, Li K (2019) Combined toxicity of 2,4-dichlorophenoxyacetic acid and its metabolites 2,4-dichlorophenol (2,4-DCP) on two nontarget organisms. ACS Omega 4:1669–1677. https://doi.org/10.1021/acsomega.8b02282

    Article  CAS  Google Scholar 

  • Karas PA, Perruchon C, Exarhou K, Ehaliotis C, Karpouzas DG (2011) Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi. Biodegradation 22:215–228. https://doi.org/10.1007/s10532-010-9389-1

    Article  CAS  Google Scholar 

  • Kaštánek F, Topka P, Soukup K, Šolcová O (2020) Chapter 3. Thermal treatment. In: The handbook of environmental remediation. R Soc Chem 53–87

  • Kelley KB, Riechers DE (2007) Recent developments in auxin biology and new opportunities for auxinic herbicide research. Pestic Biochem Physiol 89:1–11. https://doi.org/10.1016/J.PESTBP.2007.04.002

    Article  CAS  Google Scholar 

  • Kennepohl E, Munro I. (2001) Phenoxy herbicides (2,4-D). In: Krieger R (ed) Handbook of pesticide toxicology, 2nd Edtion. San Diego, pp 1623–1638

  • Khalil AB (2003) Isolation and characterization of 2,4-dichlorophenoxyacetic acid degrading organisms from soil in Jordan Valley. Biotechnology(Faisalabad) 2:73–85. https://doi.org/10.3923/biotech.2003.73.85

    Article  Google Scholar 

  • Kiljanek T, Niewiadowska A, Semeniuk S, Gaweł M, Borzęcka M, Posyniak A (2016) Multi-residue method for the determination of pesticides and pesticide metabolites in honeybees by liquid and gas chromatography coupled with tandem mass spectrometry—honeybee poisoning incidents. J Chromatogr A 1435:100–114. https://doi.org/10.1016/J.CHROMA.2016.01.045

    Article  CAS  Google Scholar 

  • Kumar A, Trefault N, Olaniran AO (2014) Microbial degradation of 2,4-dichlorophenoxyacetic acid: insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Crit Rev Microbiol:1–15. https://doi.org/10.3109/1040841X.2014.917068

  • Leahy J, Mendelsohn M, Kough J et al (2014) Biopesticide oversight and registration at the U.S. Environmental Protection Agency. ACS Symp Ser 1172:3–18. https://doi.org/10.1021/bk-2014-1172.ch001

    Article  CAS  Google Scholar 

  • Lerro CC, Beane Freeman LE, Portengen L, Kang D, Lee K, Blair A, Lynch CF, Bakke B, de Roos AJ, Vermeulen RCH (2017) A longitudinal study of atrazine and 2,4-D exposure and oxidative stress markers among Iowa corn farmers. Environ Mol Mutagen 58:30–38. https://doi.org/10.1002/em.22069

    Article  CAS  Google Scholar 

  • Magnoli K, Benito N, Aluffi M et al (2019) Micobiota cultivable tolerante a 2,4-D aislada de suelos agrícolas con historial de exposición a plaguicidas organoclorados. III Jornadas de Microbiología sobre Temáticas Específicas del NOA. Microbiología Agrícola y Ambiental. San Miguel de Tucumán, Tucumán, Argentina

  • Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR (2016) Effects of pesticides on environment. In: Plant, soil and microbes. Springer International Publishing, Cham, pp 253–269

    Chapter  Google Scholar 

  • Menezes C, Ruiz-Jarabo I, Martos-Sitcha JA, Toni C, Salbego J, Becker A, Loro VL, Martínez-Rodríguez G, Mancera JM, Baldisserotto B (2015) The influence of stocking density and food deprivation in silver catfish ( Rhamdia quelen ): a metabolic and endocrine approach. Aquaculture 435:257–264. https://doi.org/10.1016/j.aquaculture.2014.09.044

    Article  Google Scholar 

  • Merini LJ, Cuadrado V, Flocco CG, Giulietti AM (2007) Dissipation of 2,4-D in soils of the humid Pampa region, Argentina: a microcosm study. Chemosphere 68:259–265. https://doi.org/10.1016/J.CHEMOSPHERE.2007.01.012

    Article  CAS  Google Scholar 

  • Muller RH, Babel W (2004) Delftia acidovorans MC1 resists high herbicide concentrations — a study of nutristat growth on ( RS )-2-(2,4-dichlorophenoxy)propionate and 2,4-dichlorophenoxyacetate. Biosci Biotechnol Biochem 68:622–630. https://doi.org/10.1271/bbb.68.622

    Article  Google Scholar 

  • Nykiel-Szymańska J, Stolarek P, Bernat P (2018) Elimination and detoxification of 2,4-D by Umbelopsis isabellina with the involvement of cytochrome P450. Environ Sci Pollut Res 25:2738–2743. https://doi.org/10.1007/s11356-017-0571-4

    Article  CAS  Google Scholar 

  • Ordaz-Guillén Y, Galíndez-Mayer CJ, Ruiz-Ordaz N, Juárez-Ramírez C, Santoyo-Tepole F, Ramos-Monroy O (2014) Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation. Environ Sci Pollut Res 21:8765–8773. https://doi.org/10.1007/s11356-014-2809-8

    Article  CAS  Google Scholar 

  • Ortiz-Hernandez ML, Snchez-Salinas E, Dantn Gonzlez E, Luisa M (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. In: Biodegradation - Life of Science. InTech

  • Osborne PP, Xu Z, Swanson KD, Walker T, Farmer DK (2015) Dicamba and 2,4-D residues following applicator cleanout: a potential point source to the environment and worker exposure. J Air Waste Manage Assoc 65:1153–1158. https://doi.org/10.1080/10962247.2015.1072593

    Article  CAS  Google Scholar 

  • Pandey C, Prabha D, Negi YK (2018) Mycoremediation and environmental sustainability. https://doi.org/10.1007/978-3-319-77386-5

  • Pazmiño DM, Romero-Puertas MC, Sandalio LM (2012) Insights into the toxicity mechanism of and cell response to the herbicide 2,4-D in plants. Plant Signal Behav 7:425–427. https://doi.org/10.4161/psb.19124

    Article  CAS  Google Scholar 

  • Peterson MA, McMaster SA, Riechers DE et al (2016) 2,4-D past, present, and future: a review. Weed Technol 30:303–345. https://doi.org/10.1614/wt-d-15-00131.1

    Article  Google Scholar 

  • Pimviriyakul P, Wongnate T, Tinikul R, Chaiyen P (2020) Microbial degradation of halogenated aromatics: molecular mechanisms and enzymatic reactions. Microb Biotechnol 13:67–86. https://doi.org/10.1111/1751-7915.13488

    Article  Google Scholar 

  • Pretto A, Loro VL, Menezes C, Silveira Moraes B, Boschmann Reimche G, Zanella R, de Ávila LA (2011) Commercial formulation containing quinclorac and metsulfuron-methyl herbicides inhibit acetylcholinesterase and induce biochemical alterations in tissues of Leporinus obtusidens. Ecotoxicol Environ Saf 74:336–341. https://doi.org/10.1016/j.ecoenv.2010.10.003

    Article  CAS  Google Scholar 

  • Quan X, Ma J, Xiong W, Wang X (2015) Bioaugmentation of half-matured granular sludge with special microbial culture promoted establishment of 2,4-dichlorophenoxyacetic acid degrading aerobic granules. Bioprocess Biosyst Eng 38:1081–1090. https://doi.org/10.1007/s00449-014-1350-y

    Article  CAS  Google Scholar 

  • Qurratu A, Reehan A (2016) A review of 2,4-Dichlorophenoxyacetic acid (2,4-D) derivatives: 2,4-D dimethylamine salt and 2,4-D butyl ester. Int J Appl Eng Res 11:9946–9955

    Google Scholar 

  • Raghavendra K., Gundappagol R., Santhosh G. (2017) Impact of herbicide application on beneficial soil microbial community, nodulation and yield parameters of chickpea ( Cicer arietinum L. )

  • Rivas L, Fegan N, Dykes GA (2008) Expression and putative roles in attachment of outer membrane proteins of Escherichia coli O157 from planktonic and sessile culture. Foodborne Pathog Dis 5:155–164. https://doi.org/10.1089/fpd.2007.0052

    Article  CAS  Google Scholar 

  • Rodil R, Quintana JB, Concha-Graña E, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2012) Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain). Chemosphere 86:1040–1049. https://doi.org/10.1016/J.CHEMOSPHERE.2011.11.053

    Article  CAS  Google Scholar 

  • Rose MT, Cavagnaro TR, Scanlan CA et al (2016) Impact of herbicides on soil biology and function. Adv Agron 136:133–220. https://doi.org/10.1016/BS.AGRON.2015.11.005

    Article  Google Scholar 

  • Ryan T, Bumpus J (1989) Biodegradation of 2,4,5-trichlorophenoxyacetic acid in liquid culture and in soil by the white rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 31:302–307. https://doi.org/10.1007/BF00258414

    Article  CAS  Google Scholar 

  • Santín-Montanyá I, Zambrana-Quesada E, Tenorio-Pasamón JL (2013) Weed management in cereals in semi-arid environments: a review. In: Herbicides - Current Research and Case Studies in Use. InTech 133–152

  • Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GPS, Handa N, Kohli SK, Yadav P, Bali AS, Parihar RD, Dar OI, Singh K, Jasrotia S, Bakshi P, Ramakrishnan M, Kumar S, Bhardwaj R, Thukral AK (2019) Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci 1. https://doi.org/10.1007/s42452-019-1485-1

  • Silva TM, Stets MI, Mazzetto AM, Andrade FD, Pileggi SAV, Fávero PR, Cantú MD, Carrilho E, Carneiro PIB, Pileggi M (2007) Degradation of 2,4-D herbicide by microorganisms isolated from Brazilian contaminated soil. Braz J Microbiol 38:522–525

    Article  Google Scholar 

  • Silver MK, Shao J, Li M, Ji C, Chen M, Xia Y, Lozoff B, Meeker JD (2019) Prenatal exposure to the herbicide 2,4-D is associated with deficits in auditory processing during infancy. Environ Res 172:486–494. https://doi.org/10.1016/j.envres.2019.02.046

    Article  CAS  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley-Interscience, New Jersey

  • Soloneski S, Nikoloff N, Larramendy ML (2016) Analysis of possible genotoxicity of the herbicide flurochloridone and its commercial formulations: Endo III and Fpg alkaline comet assays in Chinese hamster ovary (CHO-K1) cells. Mutat Res Toxicol Environ Mutagen 797:46–52. https://doi.org/10.1016/J.MRGENTOX.2016.01.004

    Article  CAS  Google Scholar 

  • Song Y (2014) Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J Integr Plant Biol 56:106–113. https://doi.org/10.1111/jipb.12131

    Article  CAS  Google Scholar 

  • Soulas G (2003) Pesticide degradation in soils. In: Encyclopedia of Environmental Microbiology. John Wiley & Sons, Inc., Hoboken, NJ, USA

  • Stibal M, Bælum J, Holben WE, Sørensen SR, Jensen A, Jacobsen CS (2012) Microbial degradation of 2,4-dichlorophenoxyacetic acid on the Greenland ice sheet. Appl Environ Microbiol 78:5070–5076. https://doi.org/10.1128/AEM.00400-12

    Article  CAS  Google Scholar 

  • Syberg K, Binderup ML, Cedergreen N, Rank J (2015) Mixture genotoxicity of 2,4-dichlorophenoxyacetic acid, acrylamide, and maleic hydrazide on human Caco-2 cells assessed with comet assay. J Toxicol Environ Heal - Part A Curr Issues 78:369–380. https://doi.org/10.1080/15287394.2014.983626

    Article  CAS  Google Scholar 

  • Thiel M, Kaschabek SR, Gruning J et al (2005) Two unusual chlorocatechol catabolic gene clusters in Sphingomonas sp. TFD44. Arch Microbiol 183:80–94. https://doi.org/10.1007/s00203-004-0748-3

    Article  CAS  Google Scholar 

  • Tsaboula A, Papadakis E-N, Vryzas Z, Kotopoulou A, Kintzikoglou K, Papadopoulou-Mourkidou E (2016) Environmental and human risk hierarchy of pesticides: a prioritization method, based on monitoring, hazard assessment and environmental fate. Environ Int 91:78–93. https://doi.org/10.1016/J.ENVINT.2016.02.008

    Article  CAS  Google Scholar 

  • United State Department of Agriculture (USDA) (2017) Foreign agricultural service. In: Circular series. In: World Agricultural Production

  • Vroumsia T, Steiman R, Seigle-Murandi F, Benoit-Guyod JL (2005) Fungal bioconversion of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP). Chemosphere 60:1471–1480. https://doi.org/10.1016/j.chemosphere.2004.11.102

    Article  CAS  Google Scholar 

  • Wágner G, Nádasy E (2006) Effect of pre-emergence herbicides on growth parameters of green pea. Commun Agric Appl Biol Sci 71:809–813

    Google Scholar 

  • WHO (World Health Organization) (2017) Guidelines for drinking-water quality. Fourth edition incorporating the first addenum

  • Wijnja H, Doherty JJ, Safie SA (2014) Changes in pesticide occurrence in suburban surface waters in Massachusetts, USA, 1999–2010. Bull Environ Contam Toxicol 93:228–232. https://doi.org/10.1007/s00128-014-1251-4

    Article  CAS  Google Scholar 

  • Wilson NK, Chuang JC, Lyu C, Menton R, Morgan MK (2003) Aggregate exposures of nine preschool children to persistent organic pollutants at day care and at home. J Expo Sci Environ Epidemiol 13:187–202. https://doi.org/10.1038/sj.jea.7500270

    Article  CAS  Google Scholar 

  • Wu X, Wang W, Liu J, Pan D, Tu X, Lv P, Wang Y, Cao H, Wang Y, Hua R (2017) Rapid biodegradation of the herbicide 2,4-dichlorophenoxyacetic acid by Cupriavidus gilardii T-1. J Agric Food Chem 65:3711–3720. https://doi.org/10.1021/acs.jafc.7b00544

    Article  CAS  Google Scholar 

  • Xia ZY, Zhang L, Zhao Y, Yan X, Li SP, Gu T, Jiang JD (2017) Biodegradation of the herbicide 2,4-dichlorophenoxyacetic acid by a new isolated strain of Achromobacter sp. LZ35. Curr Microbiol 74:193–202. https://doi.org/10.1007/s00284-016-1173-y

    Article  CAS  Google Scholar 

  • Yamini Y, Saleh A (2013) Ultrasound-assisted emulsification microextraction combined with injection-port derivatization for the determination of some chlorophenoxyacetic acids in water samples. J Sep Sci 36:2330–2338. https://doi.org/10.1002/jssc.201300340

    Article  CAS  Google Scholar 

  • Zabaloy MC, Garland JL, Gómez MA (2008) An integrated approach to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas region, Argentina. Appl Soil Ecol 40:1–12. https://doi.org/10.1016/J.APSOIL.2008.02.004

    Article  Google Scholar 

  • Zhang W (2018) Global pesticide use: profile, trends, cost/benefit and more. Proc Int Acad Ecol Environ Sci 8:1–27

Download references

Funding

This work was carried out thanks to grants from the Consejo Nacional de Ciencia y Tecnología (CONICET PIP), Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto (SECYT-UNRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Lorena Barberis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magnoli, K., Carranza, C.S., Aluffi, M.E. et al. Herbicides based on 2,4-D: its behavior in agricultural environments and microbial biodegradation aspects. A review. Environ Sci Pollut Res 27, 38501–38512 (2020). https://doi.org/10.1007/s11356-020-10370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10370-6

Keywords

Navigation