Skip to main content
Log in

Modification of bio-hydroxyapatite generated from waste poultry bone with MgO for purifying methyl violet-laden liquids

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present work, biological hydroxyapatite (Bio-HAp) was generated from waste poultry bone and modified with magnesium oxide (MgO) nanoparticles (Bio-HAp/MgO) and used in the adsorption process of methyl violet (MV). The Bio-HAp and Bio-HAp/MgO mesoporous composites were characterized using physicochemical techniques. Bio-HAp and Bio-HAp/MgO composites had crystalline and mesoporous structures. The specific surface area of Bio-HAp/MgO mesoporous composites (14.7 m2/g) was higher and lower than that of Bio-HAp (4.6 m2/g) and MgO (154.9 m2/g), respectively. The effect of pH (2–10), temperature (25–45 °C), contact time (10–50 min), initial MV concentration (5–25 mg/L), and Bio-HAp/MgO quantity (0.5–2.5 g/L) on the adsorption efficiency was optimized through response surface methodology-central composite design (RSM-CCD). Among four isotherm models, the Freundlich isotherm (R2 > 0.98) was better matched with the equilibrium data. Based on the isotherm parameters (E, n, and RL), the MV adsorption process using Bio-HAp particles and Bio-HAp/MgO mesoporous composites is physical and desirable. The pseudo-second-order (R2 > 0.97) was more potent than the other models for modeling kinetic data. According to the thermodynamic investigation, the MV adsorption was an exothermic and spontaneous process. The mesoporous composite had good reusability to remove MV dye from liquid media up to 5 steps. Bio-HAp particles and Bio-HAp/MgO mesoporous composites were tested for treatment, which significantly reduced the dye content of the real sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdulhameed AS, Mohammad A-T, Jawad AH (2019) Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye. J Clean Prod 232:43–56

    Article  CAS  Google Scholar 

  • Abshirini Y, Esmaeili H, Foroutan R (2019) Enhancement removal of Cr (VI) ion using magnetically modified MgO nanoparticles. Mater Res Express 6(12):125513

    Article  CAS  Google Scholar 

  • Annadurai G, Juang R-S, Lee D-J (2002) Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J Hazard Mater 92(3):263–274

    Article  CAS  Google Scholar 

  • Astuti W, Chafidz A, Wahyuni ET, Prasetya A, Bendiyasa IM, Abasaeed AE (2019) Methyl violet dye removal using coal fly ash (CFA) as a dual sites adsorbent. J Environ Chem Eng 7(5):103262

    Article  CAS  Google Scholar 

  • Bensalah H, Younssi SA, Ouammou M, Gurlo A, Bekheet MF (2020) Azo dye adsorption on an industrial waste-transformed hydroxyapatite adsorbent: kinetics, isotherms, mechanism and regeneration studies. J Environ Chem Eng 8(3):103807. https://doi.org/10.1016/j.jece.2020.103807

    Article  CAS  Google Scholar 

  • Cherifi Z, Boukoussa B, Mokhtar A, Hachemaoui M, Zeggai FZ, Zaoui A, Bachari K, Meghabar R (2020) Preparation of new nanocomposite poly (GDMA)/mesoporous silica and its adsorption behavior towards cationic dye. React Funct Polym 153:104611. https://doi.org/10.1016/j.reactfunctpolym.2020.104611

    Article  CAS  Google Scholar 

  • Ciesielczyk F, Bartczak P, Zdarta J, Jesionowski T (2017) Active MgO-SiO2 hybrid material for organic dye removal: a mechanism and interaction study of the adsorption of C.I. Acid Blue 29 and C.I. Basic Blue 9. J Environ Manag 204:123–135. https://doi.org/10.1016/j.jenvman.2017.08.041

    Article  CAS  Google Scholar 

  • Daoud M, Benturki O, Girods P, Donnot A, Fontana S (2019) Adsorption ability of activated carbons from Phoenix dactylifera rachis and Ziziphus jujube stones for the removal of commercial dye and the treatment of dyestuff wastewater. Microchem J 148:493–502. https://doi.org/10.1016/j.microc.2019.05.022

    Article  CAS  Google Scholar 

  • El-Sawy NM, Raafat AI, Badawy NA, Mohamed AM (2020) Radiation development of pH-responsive (xanthan-acrylic acid)/MgO nanocomposite hydrogels for controlled delivery of methotrexate anticancer drug. Int J Biol Macromol 142:254–264

    Article  CAS  Google Scholar 

  • El-Shaer A, Abdelfatah M, Mahmoud KR, Momay S, Eraky M (2020) Correlation between photoluminescence and positron annihilation lifetime spectroscopy to characterize defects in calcined MgO nanoparticles as a first step to explain antibacterial activity. J Alloys Compd 817:152799

    Article  CAS  Google Scholar 

  • Ergene A, Ada K, Tan S, Katırcıoğlu H (2009) Removal of Remazol Brilliant Blue R dye from aqueous solutions by adsorption onto immobilized Scenedesmus quadricauda: equilibrium and kinetic modeling studies. Desalination 249(3):1308–1314

    Article  CAS  Google Scholar 

  • Eskhan A, Banat F, Selvaraj M, Haija MA (2019) Enhanced removal of methyl violet 6B cationic dye from aqueous solutions using calcium alginate hydrogel grafted with poly (styrene-co-maleic anhydride). Polym Bull 76(1):175–203

    Article  CAS  Google Scholar 

  • Esmaeili H, Foroutan R (2019) Adsorptive behavior of methylene blue onto sawdust of sour lemon, date palm, and eucalyptus as agricultural wastes. J Dispers Sci Technol 40(7):990–999

    Article  CAS  Google Scholar 

  • Fan L, Zhou Y, Yang W, Chen G, Yang F (2006) Electrochemical degradation of Amaranth aqueous solution on ACF. J Hazard Mater 137(2):1182–1188. https://doi.org/10.1016/j.jhazmat.2006.04.008

    Article  CAS  Google Scholar 

  • Foroutan R, Ahmadlouydarab M, Ramavandi B, Mohammadi R (2018) Studying the physicochemical characteristics and metals adsorptive behavior of CMC-g-HAp/Fe3O4 nanobiocomposite. J Environ Chem Eng 6(5):6049–6058

    Article  CAS  Google Scholar 

  • Foroutan R, Mohammadi R, Farjadfard S, Esmaeili H, Ramavandi B, Sorial GA (2019a) Eggshell nano-particle potential for methyl violet and mercury ion removal: surface study and field application. Adv Powder Technol 30(10):2188–2199. https://doi.org/10.1016/j.apt.2019.06.034

  • Foroutan R, Mohammadi R, Peighambardoust SJ, Jalali S, Ramavandi B (2020a) Application of nano-silica particles generated from offshore white sandstone for cadmium ions elimination from aqueous media. Environ Technol Innov:101031

  • Foroutan R, Mohammadi R, Ramavandi B (2019b) Elimination performance of methylene blue, methyl violet, and Nile blue from aqueous media using AC/CoFe2O4 as a recyclable magnetic composite. Environ Sci Pollut Res 26(19):19523–19539. https://doi.org/10.1007/s11356-019-05282-z

  • Foroutan R, Mohammadi R, Razeghi J, Ramavandi B (2019c) Performance of algal activated carbon/Fe3O4 magnetic composite for cationic dyes removal from aqueous solutions. Algal Res 40:101509

    Article  Google Scholar 

  • Foroutan R, Mohammadi R, Sohrabi N, Sahebi S, Farjadfard S, Esvandi Z, Ramavandi B (2020b) Calcined alluvium of agricultural streams as a recyclable and cleaning tool for cationic dye removal from aqueous media. Environ Technol Innov 17:100530

    Article  Google Scholar 

  • Foroutan R, Peighambardoust SJ, Mohammadi R, Omidvar M, Sorial GA, Ramavandi B (2020c) Influence of chitosan and magnetic iron nanoparticles on chromium adsorption behavior of natural clay: adaptive neuro-fuzzy inference modeling. Int J Biol Macromol 151:355–365

    Article  CAS  Google Scholar 

  • Gómez J, Galán J, Rodríguez A, Walker G (2014) Dye adsorption onto mesoporous materials: pH influence, kinetics and equilibrium in buffered and saline media. J Environ Manag 146:355–361

    Article  Google Scholar 

  • Islam MA, Ali I, Karim SMA, Hossain Firoz MS, Chowdhury A-N, Morton DW, Angove MJ (2019) Removal of dye from polluted water using novel nano manganese oxide-based materials. J Water Process Eng 32:100911. https://doi.org/10.1016/j.jwpe.2019.100911

    Article  Google Scholar 

  • Jia Z, Li Z, Ni T, Li S (2017) Adsorption of low-cost absorption materials based on biomass (Cortaderia selloana flower spikes) for dye removal: kinetics, isotherms and thermodynamic studies. J Mol Liq 229:285–292. https://doi.org/10.1016/j.molliq.2016.12.059

    Article  CAS  Google Scholar 

  • Joseph J, Radhakrishnan RC, Johnson JK, Joy SP, Thomas J (2020) Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Mater Chem Phys 242:122488. https://doi.org/10.1016/j.matchemphys.2019.122488

    Article  CAS  Google Scholar 

  • Jun B-M, Kim S, Rho H, Park CM, Yoon Y (2020) Ultrasound-assisted Ti3C2Tx MXene adsorption of dyes: removal performance and mechanism analyses via dynamic light scattering. Chemosphere 254:126827. https://doi.org/10.1016/j.chemosphere.2020.126827

    Article  CAS  Google Scholar 

  • Kumar V, Saharan P, Sharma AK, Umar A, Kaushal I, Mittal A, Al-Hadeethi Y, Rashad B (2020) Silver doped manganese oxide-carbon nanotube nanocomposite for enhanced dye-sequestration: isotherm studies and RSM modelling approach. Ceram Int 46(8):10309–10319

    Article  CAS  Google Scholar 

  • Kumara PS, Joshibaa GJ, Feminaa CC, Varshinia P, Priyadharshinia S, Karthicka MA, Jothiranib R (2019) A critical review on recent developments in the low-cost adsorption of dyes from wastewater. Desalin Water Treat 172:395–416

    Article  Google Scholar 

  • Lei X, Xu T, Yao W, Wu Q, Zou R (2020) Hollow hydroxyapatite microspheres modified by CdS nanoparticles for efficiently photocatalytic degradation of tetracycline. J Taiwan Inst Chem Eng 106:148–158

    Article  CAS  Google Scholar 

  • Liu L, Wang R, Yu J, Hu L, Wang Z, Fan Y (2018) Adsorption of reactive blue 19 from aqueous solution by chitin nanofiber−/nanowhisker-based hydrogels. RSC Adv 8(28):15804–15812

    Article  CAS  Google Scholar 

  • Mahini R, Esmaeili H, Foroutan R (2018) Adsorption of methyl violet from aqueous solution using brown algae Padina sanctae-crucis. Turk J Biochem 43(6):623–631

    Article  CAS  Google Scholar 

  • Mittal H, Babu R, Alhassan SM (2020) Utilization of gum xanthan based superporous hydrogels for the effective removal of methyl violet from aqueous solution. Int J Biol Macromol 143:413–423

    Article  CAS  Google Scholar 

  • Mohamed RM, Shawky A, Mkhalid IA (2017) Facile synthesis of MgO and Ni-MgO nanostructures with enhanced adsorption of methyl blue dye. J Phys Chem Solids 101:50–57. https://doi.org/10.1016/j.jpcs.2016.10.009

    Article  CAS  Google Scholar 

  • Naseem K, Farooqi ZH, Begum R, Irfan A (2018) Removal of Congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: a review. J Clean Prod 187:296–307. https://doi.org/10.1016/j.jclepro.2018.03.209

    Article  CAS  Google Scholar 

  • Nasiri R, Arsalani N (2018) Synthesis and application of 3D graphene nanocomposite for the removal of cationic dyes from aqueous solutions: response surface methodology design. J Clean Prod 190:63–71. https://doi.org/10.1016/j.jclepro.2018.04.143

    Article  CAS  Google Scholar 

  • Naushad M, Alqadami AA, AlOthman ZA, Alsohaimi IH, Algamdi MS, Aldawsari AM (2019) Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J Mol Liq 293:111442. https://doi.org/10.1016/j.molliq.2019.111442

    Article  CAS  Google Scholar 

  • Ofomaja AE (2008) Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust. Chem Eng J 143(1–3):85–95

    Article  CAS  Google Scholar 

  • Pei Y, Jiang Z, Yuan L (2019) Facile synthesis of MCM-41/MgO for highly efficient adsorption of organic dye. Colloids Surf A Physicochem Eng Asp 581:123816. https://doi.org/10.1016/j.colsurfa.2019.123816

    Article  CAS  Google Scholar 

  • Pinheiro D, Sunaja Devi KR, Jose A, Rajiv Bharadwaj N, Thomas KJ (2020) Effect of surface charge and other critical parameters on the adsorption of dyes on SLS coated ZnO nanoparticles and optimization using response surface methodology. J Environ Chem Eng 8(4):103987. https://doi.org/10.1016/j.jece.2020.103987

    Article  CAS  Google Scholar 

  • Priya SAK, Kaith BS, Tanwar V, Bhatia JK, Sharma N, Bajaj S, Panchal S (2019) RSM-CCD optimized sodium alginate/gelatin based ZnS-nanocomposite hydrogel for the effective removal of biebrich scarlet and crystal violet dyes. Int J Biol Macromol 129:214–226. https://doi.org/10.1016/j.ijbiomac.2019.02.034

    Article  CAS  Google Scholar 

  • Renita AA, Kumar PS, Jabasingh SA (2019) Redemption of acid fuchsin dye from wastewater using de-oiled biomass: kinetics and isotherm analysis. Bioresourc Technol Rep 7:7. https://doi.org/10.1016/j.biteb.2019.100300

    Article  Google Scholar 

  • Rout S, Muduli B, Kumar A, Pulhani V (2020) Removal of uranium (VI) from water using hydroxyapatite coated activated carbon powder nanocomposite. J Environ Sci Health A 55(5):596–605. https://doi.org/10.1080/10934529.2020.1721228

  • Salla S, Ankem NR, Kumar PS, Renita AA, Micheal K (2019) Enhanced photocatalytic activity of environment-friendly C/ZnFe2O nanocomposites: application in dye removal. Desalin Water Treat 137:395–402. https://doi.org/10.5004/dwt.2019.23220

    Article  CAS  Google Scholar 

  • Samal K, Raj N, Mohanty K (2019) Saponin extracted waste biomass of Sapindus mukorossi for adsorption of methyl violet dye in aqueous system. Surf Interf 14:166–174

    Article  CAS  Google Scholar 

  • Saravanan A, Kumar PS, Yaashikaa PR, Kanmani S, Varthine RH, Muthu CMM, Yuvaraj D (2019) Modelling on the removal of dye from industrial wastewater using surface improved Enteromorpha intestinalis. Int J Environ Res 13(2):349–366. https://doi.org/10.1007/s41742-019-00181-0

    Article  CAS  Google Scholar 

  • Sulaiman NF, Bakar WAWA, Toemen S, Kamal NM, Nadarajan R (2019) In depth investigation of bi-functional, Cu/Zn/γ-Al2O3 catalyst in biodiesel production from low-grade cooking oil: optimization using response surface methodology. Renew Energy 135:408–416

    Article  CAS  Google Scholar 

  • Tantirungrotechai J, Chotmongkolsap P, Pohmakotr M (2010) Synthesis, characterization, and activity in transesterification of mesoporous Mg–Al mixed-metal oxides. Microporous Mesoporous Mater 128(1–3):41–47

    Article  CAS  Google Scholar 

  • Tanzifi M, Tavakkoli Yaraki M, Beiramzadeh Z, Heidarpoor Saremi L, Najafifard M, Moradi H, Mansouri M, Karami M, Bazgir H (2020) Carboxymethyl cellulose improved adsorption capacity of polypyrrole/CMC composite nanoparticles for removal of reactive dyes: experimental optimization and DFT calculation. Chemosphere 255:127052. https://doi.org/10.1016/j.chemosphere.2020.127052

    Article  CAS  Google Scholar 

  • Tissera ND, Wijesena RN, Yasasri H, de Silva KMN, de Silva RM (2020) Fibrous keratin protein bio micro structure for efficient removal of hazardous dye waste from water: surface charge mediated interfaces for multiple adsorption desorption cycles. Mater Chem Phys 246:122790. https://doi.org/10.1016/j.matchemphys.2020.122790

    Article  CAS  Google Scholar 

  • Venkatesha T, Viswanatha R, Nayaka YA, Chethana B (2012) Kinetics and thermodynamics of reactive and vat dyes adsorption on MgO nanoparticles. Chem Eng J 198-199:1–10

    Article  CAS  Google Scholar 

  • Vesali-Kermani E, Habibi-Yangjeh A, Ghosh S (2020) Visible-light-induced nitrogen photofixation ability of g-C3N4 nanosheets decorated with MgO nanoparticles. J Ind Eng Chem 84:185–195

    Article  CAS  Google Scholar 

  • Vignesh Kumar TH, Sivasankar V, Fayoud N, Oualid HA, Sundramoorthy AK (2018) Synthesis and characterization of coral-like hierarchical MgO incorporated fly ash composite for the effective adsorption of azo dye from aqueous solution. Appl Surf Sci 449:719–728. https://doi.org/10.1016/j.apsusc.2018.01.060

    Article  CAS  Google Scholar 

  • Wei Y, Ji Q, Chen L, Hao J, Yao C, Dong X (2017) Preparation of an inorganic coagulant-polysilicate–magnesium for dyeing wastewater treatment: effect of acid medium on the characterization and coagulation performance. J Taiwan Inst Chem Eng 72:142–148. https://doi.org/10.1016/j.jtice.2017.01.020

    Article  CAS  Google Scholar 

  • Xiao J, Wang L, Ran J, Zhao J, Tao M, Zhang W (2020) Highly selective removal of cationic dyes from water by acid-base regulated anionic functionalized polyacrylonitrile fiber: fast adsorption, low detection limit, reusability. React Funct Polym 146:104394. https://doi.org/10.1016/j.reactfunctpolym.2019.104394

    Article  CAS  Google Scholar 

  • You Y, Huang Z, Ma R, Shi C, Li X, Liu D, Dong M, Guo Z (2019) Sodium alginate templated hydroxyapatite/calcium silicate composite adsorbents for efficient dye removal from polluted water. Int J Biol Macromol 141:1035–1043

    Article  CAS  Google Scholar 

  • Yuan Q-h, Huang H-q, Wang W-c, Zhou G-h, Luo L, Zeng X-s, Liu Y (2020) Achieving high stability of MgO/carbon nanotube interface via the co-deposition technique. J Alloys Compd 824:153889

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Jamaleddin Peighambardoust or Bahman Ramavandi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1668 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foroutan, R., Peighambardoust, S.J., Aghdasinia, H. et al. Modification of bio-hydroxyapatite generated from waste poultry bone with MgO for purifying methyl violet-laden liquids. Environ Sci Pollut Res 27, 44218–44229 (2020). https://doi.org/10.1007/s11356-020-10330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10330-0

Keywords

Navigation