Skip to main content
Log in

Novel eco-friendly electrospun nanomagnetic zinc oxide hybridized PVA/alginate/chitosan nanofibers for enhanced phenol decontamination

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the current study, poly(vinyl alcohol)/alginate/chitosan (PVA/Alg/CS) composite nanofiber was immobilized with six different ratios of nanomagnetic zinc oxide (M-ZnO) (0 wt%, 0.2 wt%, 0.4 wt%, 0.6 wt%, 0.8 wt%, and 1 wt%) via the electrospinning technique. The various fabricated composite (M-6) nanofibers were characterized using Fourier transform infrared (FTIR), X-ray diffractometer (XRD), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), atomic force microscope (AFM), thermogravimetric analysis (TGA), mechanical testing machine, and optical contact angle measurement. The fabricated composite nanofibers were applied for the adsorption of phenol from aqueous solutions. The 1.0 wt% M-ZnO/PVA/Alg/CS composite nanofibers were selected as the best phenol adsorbent with removal percentage of 84.22%. The influence of different processing parameter such as contact time, composite nanofiber dosage, pH, initial pollutant concentration, and temperature were examined. Increasing nanofiber dosage and the solution temperature was found to enhance the phenol adsorption onto the prepared nanocomposites. The maximum percentage of phenol removal was achieved at 84.22% after 90 min. Meanwhile, the maximum monolayer adsorption capacity (at pH = 5.0) was estimated to be 10.03 mg g−1 at 25 °C. Kinetic, isotherm, and thermodynamic studies were designated to proof the endothermic, spontaneous, and thermodynamically nature of the phenol adsorption process. These outcomes indicate the effectiveness of the fabricated M-ZnO/PVA/Alg/CS nanofibers as adsorbent materials for phenol from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abd El-Latif M, Elkady M (2011) Kinetics study and thermodynamic behavior for removing cesium, cobalt and nickel ions from aqueous solution using nano-zirconium vanadate ion exchanger. Desalination 271:41–54

    CAS  Google Scholar 

  • Abdolmaleki AY, Zilouei H, Khorasani SN (2018) Characterization of electrospinning parameters of chitosan/poly(vinyl alcohol) nanofibers to remove phenol via response surface methodology. Polym Sci 4:1–9

    Google Scholar 

  • Ahmed R, Tariq M, Ali I, Asghar R, Khanam PN, Augustine R, Hasan A (2018) Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol 120:385–393

    CAS  Google Scholar 

  • Alakanandana A, Subrahmanyam A, Kumar JS (2016) Structural and electrical conductivity studies of pure PVA and PVA doped with succinic acid polymer electrolyte system. Materials Today: Proceedings 3:3680–3688

    Google Scholar 

  • Alizadeh B, Delnavaz M, Shakeri A (2018) Removal of Cd (ӀӀ) and phenol using novel cross-linked magnetic EDTA/chitosan/TiO2 nanocomposite. Carbohydr Polym 181:675–683

    CAS  Google Scholar 

  • Alkaram UF, Mukhlis AA, Al-Dujaili AH (2009) The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. J Hazard Mater 169:324–332

    CAS  Google Scholar 

  • Amer WA, Omran MM, Rehab AF, Ayad MM (2018) Acid green crystal-based in situ synthesis of polyaniline hollow nanotubes for the adsorption of anionic and cationic dyes. RSC Adv 8:22536–22545

    CAS  Google Scholar 

  • Anitha A, Sowmya S, Kumar PS, Deepthi S, Chennazhi K, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667

    CAS  Google Scholar 

  • Anžlovar A, Orel ZC, Kogej K, Žigon M (2012) Polyol-mediated synthesis of zinc oxide nanorods and nanocomposites with poly (methyl methacrylate). J Nanomater 2012:31

    Google Scholar 

  • Ayad MM, Salahuddin NA, Minisy IM, Amer WA (2014) Chitosan/polyaniline nanofibers coating on the quartz crystal microbalance electrode for gas sensing. Sensors Actuators B Chem 202:144–153

    CAS  Google Scholar 

  • Ayad MM, Amer WA, Kotp MG (2017a) Magnetic polyaniline-chitosan nanocomposite decorated with palladium nanoparticles for enhanced catalytic reduction of 4-nitrophenol. Mol Catal 439:72–80

    CAS  Google Scholar 

  • Ayad MM, Amer WA, Kotp MG, Minisy IM, Rehab AF, Kopecký D, Fitl P (2017b) Synthesis of silver-anchored polyaniline–chitosan magnetic nanocomposite: a smart system for catalysis. RSC Adv 7:18553–18560

    Google Scholar 

  • Ayad MM, Amer WA, Zaghlol S, Minisy IM, Bober P, Stejskal J (2018) Polypyrrole-coated cotton textile as adsorbent of methylene blue dye. Chem Pap 72:1605–1618

    CAS  Google Scholar 

  • Babuponnusami A, Muthukumar K (2012) Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron. Sep Purif Technol 98:130–135

    CAS  Google Scholar 

  • Barbusiński K, Salwiczek S, Paszewska A (2016) The use of chitosan for removing selected pollutants from water and wastewater—short review. Architect Civ Eng Environ 9:107–115

    Google Scholar 

  • Beheshti, H., Irani, M., Hosseini, L., Rahimi, A. and Aliabadi, M. (2016) Removal of Cr (VI) from aqueous solutions using chitosan/MWCNT/Fe3O4 composite nanofibers-batch and column studies. Chemical Engineering Journal 284:557–564

  • Chandra, V., Park, J., Chun, Y., Lee, J.W., Hwang, I.-C. and Kim, K.S. (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS nano 4(7):3979–3986

  • Chang J-J, Lee Y-H, Wu M-H, Yang M-C, Chien C-T (2012) Preparation of electrospun alginate fibers with chitosan sheath. Carbohydr Polym 87:2357–2361

    CAS  Google Scholar 

  • Chauhan, D., Dwivedi, J. and Sankararamakrishnan, N. (2014) Novel chitosan/PVA/zerovalent iron biopolymeric nanofibers with enhanced arsenic removal applications. Environmental Science and Pollution Research 21(15):9430–9442

  • Chen, C.-C. and Chung, Y.-C. (2006) Arsenic removal using a biopolymer chitosan sorbent. Journal of Environmental Science and Health, Part A 41(4):645–658

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley

  • Dersch R, Steinhart M, Boudriot U, Greiner A, Wendorff J (2005) Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics. Polym Adv Technol 16:276–282

    CAS  Google Scholar 

  • Du J, Sun B, Zhang J, Guan X (2012) Parabola-like shaped pH-rate profile for phenols oxidation by aqueous permanganate. Environ Sci Technol 46:8860–8867

    CAS  Google Scholar 

  • El-Aassar M, El-Kady M, Hassan HS, Al-Deyab SS (2016) Synthesis and characterization of surface modified electrospun poly (acrylonitrile-co-styrene) nanofibers for dye decolorization. J Taiwan Inst Chem Eng 58:274–282

    CAS  Google Scholar 

  • El-Ashtoukhy E, El-Taweel Y, Abdelwahab O, Nassef E (2013) Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor. Int J Electrochem Sci 8:1534–1550

    CAS  Google Scholar 

  • Elkady MF, Shokry Hassan H (2015) Equilibrium and dynamic profiles of azo dye sorption onto innovative nano-zinc oxide biocomposite. Curr Nanosci 11:805–814

    CAS  Google Scholar 

  • Elkady M, Shokry Hassan H, El-Sayed EM (2015) Basic violet decolourization using alginate immobilized nanozirconium tungestovanadate matrix as cation exchanger. J Chemother:2015

  • Elkady M, Shokry Hassan H, Salama E (2016a) Sorption profile of phosphorus ions onto ZnO nanorods synthesized via sonic technique. J Eng:2016

  • Elkady MF, El-Aassar MR, Hassan HS (2016b) Adsorption profile of basic dye onto novel fabricated carboxylated functionalized co-polymer nanofibers. Polymers 8:177

    Google Scholar 

  • Elkady M, Hassan H, Amer W, Salama E, Algarni H, Shaaban E (2017) Novel magnetic zinc oxide nanotubes for phenol adsorption: mechanism modeling. Materials 10:1355

    Google Scholar 

  • Elkady M, Shokry H, Hamad H (2018) Microwave-assisted synthesis of magnetic hydroxyapatite for removal of heavy metals from groundwater. Chem Eng Technol 41:553–562

    CAS  Google Scholar 

  • Elzain AA, El-Aassar M, Hashem F, Mohamed F, Ali AS (2019) Removal of methylene dye using composites of poly (styrene-co-acrylonitrile) nanofibers impregnated with adsorbent materials. J Mol Liq 291:111335

    CAS  Google Scholar 

  • Farrokhi M, Hosseini S-C, Yang J-K, Shirzad-Siboni M (2014) Application of ZnO–Fe 3 O 4 nanocomposite on the removal of azo dye from aqueous solutions: kinetics and equilibrium studies. Water Air Soil Pollut 225:2113

    Google Scholar 

  • Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75

    CAS  Google Scholar 

  • Gokila S, Gomathi T, Sudha P, Anil S (2017) Removal of the heavy metal ion chromiuim (VI) using chitosan and alginate nanocomposites. Int J Biol Macromol 104:1459–1468

    CAS  Google Scholar 

  • Gupta, A., Chauhan, V.S. and Sankararamakrishnan, N. (2009) Preparation and evaluation of iron–chitosan composites for removal of As (III) and As (V) from arsenic contaminated real life groundwater. Water research 43(15):3862–3870

  • Gutha Y, Pathak JL, Zhang W, Zhang Y, Jiao X (2017) Antibacterial and wound healing properties of chitosan/poly (vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int J Biol Macromol 103:234–241

    CAS  Google Scholar 

  • Hafez EE, Hassan HS, Elkady M, Salama E (2014) Assessment of antibacterial activity for synthesized zinc oxide nanorods against plant pathogenic strains. Int J Sci Technol Res 3:318–324

    Google Scholar 

  • Han J, Tao F-M (2006) Correlations and predictions of p K a values of fluorophenols and bromophenols using hydrogen-bonded complexes with ammonia. J Phys Chem A 110:257–263

    CAS  Google Scholar 

  • Hayat K, Gondal M, Khaled MM, Ahmed S, Shemsi AM (2011) Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water. Appl Catal A Gen 393:122–129

    CAS  Google Scholar 

  • Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    CAS  Google Scholar 

  • Islam MS, Karim MR (2010) Fabrication and characterization of poly (vinyl alcohol)/alginate blend nanofibers by electrospinning method. Colloids Surf A Physicochem Eng Asp 366:135–140

    CAS  Google Scholar 

  • Jalayeri H, Ardejani FD, Marandi R (2013) Biodegradation of phenol from a synthetic aqueous system using acclimatized activated sludge. Arab J Geosci 6:3847–3852

    CAS  Google Scholar 

  • Jana S, Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Mishra R (2015) Characterization of physicochemical and thermal properties of chitosan and sodium alginate after biofield treatment. Pharm Anal Acta 6:1–9

    Google Scholar 

  • Jayaraman K, Kotaki M, Zhang Y, Mo X, Ramakrishna S (2004) Recent advances in polymer nanofibers. J Nanosci Nanotechnol 4:52–65

    CAS  Google Scholar 

  • Ji W, Sun Y, Yang F, van den Beucken JJ, Fan M, Chen Z, Jansen JA (2011) Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm Res 28:1259–1272

    CAS  Google Scholar 

  • Jiao X, Gutha Y, Zhang W (2017) Application of chitosan/poly (vinyl alcohol)/CuO (CS/PVA/CuO) beads as an adsorbent material for the removal of Pb (II) from aqueous environment. Colloids Surf B: Biointerfaces 149:184–195

    CAS  Google Scholar 

  • Karim MR (2013) Fabrication of electrospun aligned nanofibers from conducting polyaniline copolymer/polyvinyl alcohol/chitosan oligossacaride in aqueous solutions. Synth Met 178:34–37

    CAS  Google Scholar 

  • Khan MQ, Kharaghani D, Ullah S, Waqas M, Abbasi AMR, Saito Y, Zhu C, Kim IS (2018) Self-cleaning properties of electrospun PVA/TiO2 and PVA/ZnO nanofibers composites. Nanomaterials 8:644

    Google Scholar 

  • Kimmer D, Slobodian P, Petráš D, Zatloukal M, Olejník R, Sáha P (2009) Polyurethane/multiwalled carbon nanotube nanowebs prepared by an electrospinning process. J Appl Polym Sci 111:2711–2714

    CAS  Google Scholar 

  • Kumar H, Rani R (2013) Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route. Int Lett Chem Phys Astron 14:26–36

    Google Scholar 

  • Kumar NS, Suguna M, Subbaiah MV, Reddy AS, Kumar NP, Krishnaiah A (2010) Adsorption of phenolic compounds from aqueous solutions onto chitosan-coated perlite beads as biosorbent. Ind Eng Chem Res 49:9238–9247

    CAS  Google Scholar 

  • Kumaraswamy S, Babaladimath G, Badalamoole V, Mallaiah SH (2017) Gamma irradiation synthesis and in vitro drug release studies of ZnO/PVA hydrogel nanocomposites. Aml:546–552

  • Lee KY, Jeong L, Kang YO, Lee SJ, Park WH (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61:1020–1032

    CAS  Google Scholar 

  • Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170

    CAS  Google Scholar 

  • Liu F, Yi B, Xing D, Yu J, Zhang H (2003) Nafion/PTFE composite membranes for fuel cell applications. J Membr Sci 212:213–223

    CAS  Google Scholar 

  • Lu H, Wang J, Stoller M, Wang T, Bao Y, Hao H (2016) An overview of nanomaterials for water and wastewater treatment. Adv Mater Sci Eng 2016:1–10

    Google Scholar 

  • Ma J, Zhang M, Jiang Z, Nie M, Liu G (2010) Facile fabrication of structurally stable hyaluronic acid-based composite membranes inspired by bioadhesion. J Membr Sci 364:290–297

    CAS  Google Scholar 

  • Malayeri HZ, Ayati B, Ganjidoust H (2014) Photocatalytic phenol degradation by immobilized nano ZnO: intermediates & key operating parameters. Water Environ Res 86:771–778

    CAS  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2:e1500323

    Google Scholar 

  • Mohy-Eldin M, Elkady M, Abu-Saied M, Rahman AA, Soliman E, Elzatahry A, Youssef M (2010) Removal of cadmium ions from synthetic aqueous solutions with a novel nanosulfonated poly (glycidyl methacrylate) cation exchanger: kinetic and equilibrium studies. J Appl Polym Sci 118:3111–3122

    CAS  Google Scholar 

  • Mukherjee R, De S (2014) Adsorptive removal of phenolic compounds using cellulose acetate phthalate–alumina nanoparticle mixed matrix membrane. J Hazard Mater 265:8–19

    CAS  Google Scholar 

  • Najafabadi, H.H., Irani, M., Rad, L.R., Haratameh, A.H. and Haririan, I. (2015) Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. RSC Advances 5(21):16532–16539

  • Namasivayam C, Sureshkumar MV (2008) Removal of chromium(VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent. Bioresour Technol 99:2218–2225

    CAS  Google Scholar 

  • Nechita P (2017) Applications of chitosan in wastewater treatment. Biol Act Appl Mar Polysaccharides 209

  • Ngo HH, Guo W, Zhang J, Liang S, Ton-That C, Zhang X (2015) Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water. Bioresour Technol 182:353–363

    Google Scholar 

  • Ozkaya B (2007) Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J Hazard Mater 129:158–163

    Google Scholar 

  • Parida K, Pradhan AC (2010) Removal of phenolic compounds from aqueous solutions by adsorption onto manganese nodule leached residue. J Hazard Mater 173:758–764

    CAS  Google Scholar 

  • Park JY, Patel D, Choi ES, Baek MJ, Chang Y, Kim TJ, Lee GH (2010) Salt effects on the physical properties of magnetite nanoparticles synthesized at different NaCl concentrations. Colloids Surf A Physicochem Eng Asp 367:41–46

    CAS  Google Scholar 

  • Park H-S, Koduru JR, Choo K-H, Lee B (2015) Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter. J Hazard Mater 286:315–324

    CAS  Google Scholar 

  • Pascariu P, Airinei A, Asandulesa M, Rotaru A (2018) Insights into the optical, magnetic and dielectric properties of some novel polysulfone/NiFe2O4 composite materials. Polym Int 67:1313–1324

    CAS  Google Scholar 

  • Pedro-Monzonís M, Solera A, Ferrer J, Estrela T, Paredes-Arquiola J (2015) A review of water scarcity and drought indexes in water resources planning and management. J Hydrol 527:482–493

    Google Scholar 

  • Peña-Reyes V, Marin-Bustamante M, Manzo-Robledo A, Chanona-Pérez J, Cásarez-Santiago R, Suarez-Najera E (2017) Effect of crosslinking of alginate/Pva and chitosan/Pva, reinforced with cellulose nanoparticles obtained from Agave atrovirens Karw. Procedia Eng 200:434–439

    Google Scholar 

  • Persano L, Camposeo A, Tekmen C, Pisignano D (2013) Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng 298:504–520

    CAS  Google Scholar 

  • Rahmanian N, Jafari SM, Galanakis CM (2014) Recovery and removal of phenolic compounds from olive mill wastewater. J Am Oil Chem Soc 91:1–18

    CAS  Google Scholar 

  • Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World Scientific

  • Roy AS, Gupta S, Sindhu S, Parveen A, Ramamurthy PC (2013) Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Compos Part B 47:314–319

    CAS  Google Scholar 

  • Salari M, Dehghani MH, Azari A, Motevalli MD, Shabanloo A, Ali I (2019) High performance removal of phenol from aqueous solution by magnetic chitosan based on response surface methodology and genetic algorithm. J Mol Liq 285:146–157

    CAS  Google Scholar 

  • Sargazi G, Afzali D, Mostafavi A, Shadman A, Rezaee B, Zarrintaj P, Saeb MR, Ramakrishna S, Mozafari M (2019) Chitosan/polyvinyl alcohol nanofibrous membranes: towards green super-adsorbents for toxic gases. Heliyon 5:e01527

    Google Scholar 

  • Shokry Hassan H (2019) Role of preparation technique in the morphological structures of innovative nano-cation exchange. J Mater Res Technol 8:2854–2864

    CAS  Google Scholar 

  • Shokry Hassan H, Kashyout A, Morsi I, Nasser A, Abuklill H (2015) Development of polypyrrole coated copper nanowires for gas sensor application. Sens Bio-sensing Res 5:50–54

    Google Scholar 

  • Shokry Hassan H, Elkady M, Farghali A, Salem AM, Abd El-Hamid A (2017a) Fabrication of novel magnetic zinc oxide cellulose acetate hybrid nano-fiber to be utilized for phenol decontamination. J Taiwan Inst Chem Eng 78:307–316

    Google Scholar 

  • Shokry Hassan H, Elkady MF, Hafez EE, Salama E (2017b) Novel antibacterial zinc oxide polymeric nanocomposite membrane as wound dress. Nanosci Nanotechnol Asia 7:62–72

    Google Scholar 

  • Shokry H, Elkady M, Salama E (2020) Eco-friendly magnetic activated carbon nano-hybrid for facile oil spills separation. Sci Rep 10:1–17

    Google Scholar 

  • Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006

    CAS  Google Scholar 

  • Siva Kumar N, Subba Reddy A, Boddu VM, Krishnaiah A (2009) Development of chitosan-alginate based biosorbent for the removal of p-chlorophenol from aqueous medium. Toxicol Environ Chem 91:1035–1054

    CAS  Google Scholar 

  • Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96:557–569

    CAS  Google Scholar 

  • Sun X, Uyama H (2013) A poly (vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure. Nanoscale Res Lett 8:411

    Google Scholar 

  • Tasic Z, Gupta V, Antonijevic M (2014) The mechanism and kinetics of degradation of phenolics in wastewaters using electrochemical oxidation. Int J Electrochem Sci 9:3473–3490

    Google Scholar 

  • Thinakaran N, Baskaralingam P, Pulikesi M, Panneerselvam P, Sivanesan S (2008) Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull. J Hazard Mater 151:316–322

    CAS  Google Scholar 

  • Üner O, Geçgel Ü, Bayrak Y (2016) Adsorption of methylene blue by an efficient activated carbon prepared from Citrullus lanatus rind: kinetic, isotherm, thermodynamic, and mechanism analysis. Water Air Soil Pollut 227:247

    Google Scholar 

  • Vijayalakshmi P, Bala VSS, Thiruvengadaravi K, Panneerselvam P, Palanichamy M, Sivanesan S (2010) Removal of acid violet 17 from aqueous solutions by adsorption onto activated carbon prepared from pistachio nut shell. Sep Sci Technol 46:155–163

    Google Scholar 

  • Voronova MI, Surov OV, Guseinov SS, Barannikov VP, Zakharov AG (2015) Thermal stability of polyvinyl alcohol/nanocrystalline cellulose composites. Carbohydr Polym 130:440–447

    CAS  Google Scholar 

  • Wang X, Fu Q, Wang X, Si Y, Yu J, Wang X, Ding B (2015) In situ cross-linked and highly carboxylated poly (vinyl alcohol) nanofibrous membranes for efficient adsorption of proteins. J Mater Chem B 3:7281–7290

    CAS  Google Scholar 

  • Yamasaki H, Makihata Y, Fukunaga K (2006) Efficient phenol removal of wastewater from phenolic resin plants using crosslinked cyclodextrin particles. J Chem Technol Biotechnol 81:1271–1276

    CAS  Google Scholar 

  • Yang X, Shao C, Guan H, Li X, Gong J (2004) Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor. Inorg Chem Commun 7:176–178

    CAS  Google Scholar 

  • Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275

    CAS  Google Scholar 

  • Zhao J, Ma J, Chen J, Pan F, Jiang Z (2011) Experimental and molecular simulation investigations on interfacial characteristics of gelatin/polyacrylonitrile composite pervaporation membrane. Chem Eng J 178:1–7

    CAS  Google Scholar 

  • Zheng L, Su W, Qi Z, Xu Y, Zhou M, Xie Y (2011) First-order metal–insulator transition and infrared identification of shape-controlled magnetite nanocrystals. Nanotechnology 22:485706

    Google Scholar 

Download references

Authorship contribution statement

Eslam Salama, Marwa Elkady, and Hassan Shokry: designed and performed the experiments and wrote original draft. Wael Amer, Mohamed Ayad, and El-Zeiny Ebeid: analyzed the data and wrote the manuscript.

Funding

This work was supported by the Egyptian Science and Technology Development Fund (STDF) in Egypt (Grant No. 30735).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Shokry.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible editor: Angeles Blanco

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3231 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkady, M., Salama, E., Amer, W.A. et al. Novel eco-friendly electrospun nanomagnetic zinc oxide hybridized PVA/alginate/chitosan nanofibers for enhanced phenol decontamination. Environ Sci Pollut Res 27, 43077–43092 (2020). https://doi.org/10.1007/s11356-020-10247-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10247-8

Keywords

Navigation