Skip to main content

Advertisement

Log in

Interactions of cadmium and zinc in high zinc tolerant native species Andropogon gayanus cultivated in hydroponics: growth endpoints, metal bioaccumulation, and ultrastructural analysis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) and zinc (Zn) toxicity causes physiological disorders and harms plants, interfering with the rehabilitation of areas affected by mining activities. This study evaluated how the exposure to Zn and/or Cd affects the growth of native andropogon grass (Andropogon gayanus Kunth) plants originally found in areas contaminated with Cd and/or Zn due to zinc mining activities. Plants were cultivated for 7 weeks in a nutrient solution treated with Zn (142.3–854.0 μM) or Cd (0.9–13.3 μM) separately or combined with a molar ratio of 64:1 (Zn:Cd). A control treatment was grown in a complete Hoagland and Arnon solution (without Cd). Plant height, stem diameter, internode length, dry weight, Cd and Zn concentration, and accumulation in shoots/roots, as well as ultrastructure of roots and leaves were analyzed at the end of the experiment. The root dry weight was not significantly affected by the addition of the metals. Moreover, Zn provided higher shoot dry weight (up to 160%) relative to control. Andropogon grass tolerated both metals better separately than when applied together. Transmission electron microscopy analyses showed modifications such as vesiculation and vacuolation in the ultrastructure of andropogon tissues by Cd and/or Zn. The andropogon grass was tolerant to the doses tested, evidencing that it has potential for recovering areas contaminated with Zn and/or Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Åkesson A, Barregard L, Bergdahl IA, Nordberg GF, Nordberg M, Skerfving S (2014) Non-renal effects and the risk assessment of environmental cadmium exposure. Environ Health Perspect 122:431–438. https://doi.org/10.1289/ehp.1307110

    Article  CAS  Google Scholar 

  • Ali H, Khan E (2019) Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—concepts and implications for wildlife and human health. Hum Ecol Risk Assess 25(6):1353–1376. https://doi.org/10.1080/10807039.2018.1469398

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

    Article  CAS  Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition. International Fertilizer Industry Association, and International Zinc Association, Paris

  • Amaral DC (2013) Estudos ultraestruturais e da capacidade bioacumuladora de Zn, Cd e Pb por plantas em área de mineração de zinco. Thesis, Federal University of Lavras

  • Anju M, Banerjee DK (2011) Associations of cadmium, zinc, and lead in soils from a lead and zinc mining area as studied by single and sequential extractions. Environ Monit Assess 176:67–85. https://doi.org/10.1007/s10661-010-1567-4

    Article  CAS  Google Scholar 

  • Aravind P, Prasad MNV (2003) Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L. a free floating freshwater macrophyte. Plant Physiol Biochem 41:391–397

    Article  CAS  Google Scholar 

  • Arena C, Figlioli F, Sorrentino MC, Izzo LG, Capozzi F, Giordano S, Spagnuolo V (2017) Ultrastructural, protein and photosynthetic alterations induced by Pb and Cd in Cynara cardunculus L., and its potential for phytoremediation. Ecotoxicol Environ Saf 145:83–89

    Article  CAS  Google Scholar 

  • Asad SA, Farooq M, Afzal A, West H (2019) Integrated phytobial heavy metal remediation strategies for a sustainable clean environment - a review. Chemosphere 217:925–941. https://doi.org/10.1016/j.chemosphere.2018.11.021

    Article  CAS  Google Scholar 

  • Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma 252:399–413. https://doi.org/10.1007/s00709-014-0710-4

    Article  CAS  Google Scholar 

  • Azzarello E, Pandolfi C, Giordano C, Rossi M, Mugnai S, Mancuso S (2012) Ultramorphological and physiological modifications induced by high zinc levels in Paulownia tomentosa. Environ Exp Bot 81:11–17. https://doi.org/10.1016/j.envexpbot.2012.02.008

    Article  CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The Possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49. https://doi.org/10.1016/0921-3449(94)90077-9

    Article  Google Scholar 

  • Bert V, Meerts P, Salis P, Gruber W, Verbruggen N (2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249:9–18

    Article  CAS  Google Scholar 

  • Bešter PK, Lobnik F, Eržen I, Kastelec D, Zupan M (2013) Prediction of cadmium concentration in selected home-produced vegetables. Ecotoxicol Environ Saf 96:182–190. https://doi.org/10.1016/j.ecoenv.2013.06.011

    Article  CAS  Google Scholar 

  • Bishak YK, Payahoo L, Osatdrahimi A, Nourazarian A (2015) Mechanisms of cadmium carcinogenicity in the gastrointestinal tract. Asian Pac J Cancer Prev 16:9–21. https://doi.org/10.7314/APJCP.2015.16.1.9

    Article  Google Scholar 

  • Bolan NS, Park JH, Robinson B, Naidu R, Huh KY (2011) Phytostabilization: a green approach to contaminant containment. In: Advances in Agronomy. Elsevier, pp 145-204

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize? J Hazard Mater 266:141–166. https://doi.org/10.1016/j.jhazmat.2013.12.018

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702. https://doi.org/10.1111/j.1469-8137.2007.01996.x

    Article  CAS  Google Scholar 

  • Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F (2012) Function of nutrients: micronutrients. In: Marschner’s Mineral Nutrition of Higher Plants. Elsevier, pp 191–248

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Carvalho MTV (2010) Fitoextração de Cd e Zn e atividade de enzimas antioxidantes em ecótipos de Gomphrena elegans. Thesis, Federal University of Lavras

  • Carvalho MTV, Amaral DC, Guilherme LRG, Aarts MGM (2013) Gomphrena claussenii, the first South-American metallophyte species with indicator-like Zn and Cd accumulation and extreme metal tolerance. Front Plant Sci 4:1–10. https://doi.org/10.3389/fpls.2013.00180

    Article  Google Scholar 

  • Chang X, Song Z, Xu Y, Gao M (2020) Effects of carbon nanotubes on growth of wheat seedlings and Cd uptake. Chemosphere 240:124931. https://doi.org/10.1016/j.chemosphere.2019.124931

    Article  CAS  Google Scholar 

  • Chi K, Zou R, Wang L, Huo W, Fan H (2019) Cellular distribution of cadmium in two amaranth (Amaranthus mangostanus L.) cultivars differing in cadmium accumulation. Environ Sci Pollut Res 26:22147–22158. https://doi.org/10.1007/s11356-019-05390-w

    Article  CAS  Google Scholar 

  • Cleasby IR, Nakagawa S (2011) Neglected biological patterns in the residuals. Behav Ecol Sociobiol 65:2361–2372

    Article  Google Scholar 

  • Cui W, Gao C, Fang P, Lin G, Shen W (2013) Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water. J Hazard Mater 260:715–724. https://doi.org/10.1016/j.jhazmat.2013.06.032

    Article  CAS  Google Scholar 

  • Cundy AB, Bardos RP, Puschenreiter M, Mench M, Bert V, Friesl-Hanl W, Müller I, Li XN, Weyens N, Witters N, Vangronsveld J (2016) Brownfields to green fields: realising wider benefits from practical contaminant phytomanagement strategies. J Environ Manag 184:67–77

    Article  CAS  Google Scholar 

  • da Cunha KPV, do Nascimento CWA, Pimentel RMM, Accioly AMA, da Silva AJ (2008) Disponibilidade, acúmulo e toxidez de cádmio e zinco em milho cultivado em solo contaminado. Rev Bras Ciênc Solo 32:1319–1328. https://doi.org/10.1590/S0100-06832008000300039

    Article  Google Scholar 

  • Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2013) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35:1281–1289. https://doi.org/10.1007/s11738-012-1167-8

    Article  CAS  Google Scholar 

  • Djebali W, Zarrouk M, Brouquisse R, El Kahoui S, Limam F, Ghorbel MH, Chïbi W (2005) Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol 7:358–368

    Article  CAS  Google Scholar 

  • Favas PJC, Pratas J, Gomes MEP, Cala V (2011) Selective chemical extraction of heavy metals in tailings and soils contaminated by mining activity: environmental implications. J Geochem Explor 111:160–171. https://doi.org/10.1016/j.gexplo.2011.04.009

    Article  CAS  Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120. https://doi.org/10.1016/j.plantsci.2011.04.018

    Article  CAS  Google Scholar 

  • Guimarães MA, Santana TA, Silva EV, Zenzen IL, Loureiro ME (2008) Toxicidade e tolerância ao cádmio em plantas. Revista Trópica – Ciências Agrárias e Biológicas 1:58–68

    Google Scholar 

  • Gutiérrez M, Mickus K, Camacho LM (2016) Abandoned Pb-Zn mining wastes and their mobility as proxy to toxicity: a review. Sci Total Environ 565:392–400. https://doi.org/10.1016/j.scitotenv.2016.04.143

    Article  CAS  Google Scholar 

  • Hafeez B, Khanif YM, Saleem M (2013) Role of zinc in plant nutrition- a review. Am J Exp Agric 3:374–391

    CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ - Calif Agric Exp Stn 347:1–32

    Google Scholar 

  • Huang Z, Pan X, Wu P, Han J, Chen Q (2014) Heavy metals in vegetables and the health risk to population in Zhejiang, China. Food Control 36:248–252. https://doi.org/10.1016/j.foodcont.2013.08.036

    Article  CAS  Google Scholar 

  • Hussain T, Murtaza G, Ghafoor A, Cheema MA (2016) The Cd: Zn ratio in a soil affects Cd toxicity in spinach (Spinacea oleracea L). Pak J Agric Sci 53:419–424

    Google Scholar 

  • Ibigbami OA, Ogundiran MB, Osibanjo O (2014) Lead and cadmiumphytoremediation potentials of plants from four lead smelting slagscontaminated sites. Nat Environ 2:33–88

    Google Scholar 

  • Jia L, He X, Chen W, Liu Z, Huang Y, Yu S (2013) Hormesis phenomena under Cd stress in a hyperaccumulator—Lonicera japonica Thunb. Ecotoxicology 22:476–485. https://doi.org/10.1007/s10646-013-1041-5

    Article  CAS  Google Scholar 

  • Jia W, Lv S, Feng J, Li J, Li Y, Li S (2016) Morphophysiological characteristic analysis demonstrated the potential of sweet sorghum (Sorghum bicolor (L.) Moench) in the phytoremediation of cadmium-contaminated soils. Environ Sci Pollut Res 23:18823–18831

    Article  CAS  Google Scholar 

  • Jiao YQ, Ge W, Qin R, Sun BL, Jiang WS, Liu DH (2012) Influence of cadmium stress on growth, ultra-structure and antioxidative enzymes in Populus 2025. Fresenius Environ Bull 21:1375–1384

    CAS  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3:65–76

    CAS  Google Scholar 

  • Kabata-Pendias A, Szteke B (2015) Trace elements in abiotic and biotic environments. CRC Press, Boca Raton

    Book  Google Scholar 

  • Lagriffoul A, Mocquot B, Mench M, Vangronsveld J (1998) Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil 200:241–250. https://doi.org/10.1023/A:1004346905592

    Article  CAS  Google Scholar 

  • Li Z, Ma Z, Van der Kuijp TJ, Yuan Z, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468–469:843–853. https://doi.org/10.1016/j.scitotenv.2013.08.090

    Article  CAS  Google Scholar 

  • Lin Y-F, Aarts MGM (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206. https://doi.org/10.1007/s00018-012-1089-z

    Article  CAS  Google Scholar 

  • Liu Z, Chen W, He X, Jia L, Yu S, Zhao M (2015) Hormetic responses of Lonicera japonica Thunb. to cadmium stress. Dose-Response 1:1–10. https://doi.org/10.2203/dose-response.14-033.He

    Article  CAS  Google Scholar 

  • Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  Google Scholar 

  • Mahar A, Wang P, Li R, Zhang Z (2015) Immobilization of lead and cadmium in contaminated soil using amendments: a review. Pedosphere 25:555–568. https://doi.org/10.1016/S1002-0160(15)30036-9

    Article  CAS  Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023

    Article  CAS  Google Scholar 

  • Martins GC, Penido ES, Alvarenga IFS, Teodoro JC, Bianchi ML, Guilherme LRG (2018) Amending potential of organic and industrial by-products applied to heavy metal-rich mining soils. Ecotoxicol Environ Saf 162:581–590

    Article  CAS  Google Scholar 

  • Mingorance MD, Franco I, Rossini-Oliva S (2016) Application of different soil conditioners to restorate mine tailings with native (Cistus ladanifer L.) and non-native species (Medicago sativa L.). J Geochem Explor 174:35–45. https://doi.org/10.1016/j.gexplo.2016.02.010

    Article  CAS  Google Scholar 

  • Mohtadi A, Ghaderian SM, Schat H (2012) Lead, zinc and cadmium accumulation from two metalliferous soils with contrasting calcium contents in heavy metal-hyperaccumulating and non-hyperaccumulating metallophytes: a comparative study. Plant Soil 361:109–118

    Article  CAS  Google Scholar 

  • Ng CC, Law SH, Amru NB, Motior MR, Radzi BM (2016) Phyto-assessment of soil heavy metal accumulation in tropical grasses. J Anim Plant Sci 26:686–696

    CAS  Google Scholar 

  • Ono FB, Penido ES, Tappero R, Sparks D, Guilherme LRG (2016) Bioaccessibility of Cd and Pb in tailings from a zinc smelting in Brazil: implications for human health. Environ Geochem Health 38:1083–1096. https://doi.org/10.1007/s10653-015-9774-0

    Article  CAS  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rabêlo FHS, Borgo L (2016) Changes caused by heavy metals in micronutrient content and antioxidant system of forage grasses used for phytoremediation: an overview. Cienc Rural 46:1368–1375. https://doi.org/10.1590/0103-8478cr20151291

    Article  Google Scholar 

  • Riaz S, Iqbal M, Hussain I, Rasheed R, Ashraf MA, Mahmood S, Younas M, Iqbal MZ (2014) Chronic cadmium induced oxidative stress not the DNA fragmentation modulates growth in spring wheat (Triticum aestivum). Int J Agric Biol 16:789–794

    CAS  Google Scholar 

  • Romeo S, Francini A, Ariani A, Sebastiani L (2014) Phytoremediation of Zn: identify the diverging resistance, uptake and biomass production behaviours of poplar clones under high zinc stress. Water Air Soil Pollut 225:1813. https://doi.org/10.1007/s11270-013-1813-9

    Article  CAS  Google Scholar 

  • Schaider LA, Senn DB, Estes ER, Brabander DJ, Shine JP (2014) Sources and fates of heavy metals in a mining-impacted stream: temporal variability and the role of iron oxides. Sci Total Environ 490:456–466. https://doi.org/10.1016/j.scitotenv.2014.04.126

    Article  CAS  Google Scholar 

  • Sindern S, Tremöhlen M, Dsikowitzky L, Gronen L, Schwarzbauer J, Hartati T, Ariyani F, Eko H (2016) Heavy metals in river and coast sediments of the Jakarta Bay region ( Indonesia ) — geogenic versus anthropogenic sources. Mar Pollut Bull 110:624–633. https://doi.org/10.1016/j.marpolbul.2016.06.003

    Article  CAS  Google Scholar 

  • Sorrentino MC, Capozzi F, Amitrano C, Giordano S, Arena C, Spagnuolo V (2018) Performance of three cardoon cultivars in an industrial heavy metal contaminated soil: effects on morphology, cytology and photosynthesis. J Hazard Mater 351:131–137

    Article  CAS  Google Scholar 

  • Sousa BMDL, do Nascimento D Jr, da Silva SC, Monteiro HCDF, Rodrigues CS, da Fonseca DM, da Silveira MCT, Sbrissia AF (2010) Morphogenetic and structural characteristics of andropogon grass submitted to different cutting heights. R Bras Zootec 39:2141–2147. https://doi.org/10.1590/S1516-35982010001000006

    Article  Google Scholar 

  • Sun H, Li Y, Ji Y, Yang L, Wang W, Li H (2010) Environmental contamination and health hazard of lead and cadmium around Chatian mercury mining deposit in western Hunan Province, China. Trans Nonferrous Metal Soc 20:308–314. https://doi.org/10.1016/S1003-6326(09)60139-4

    Article  CAS  Google Scholar 

  • Tian HZ, Zhu CY, Gao JJ, Cheng K, Hao JM, Wang K, Hua SB, Wang Y, Zhou JR (2015) Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies. Atmos Chem Phys 15:10127–10147. https://doi.org/10.5194/acp-15-10127-2015

    Article  CAS  Google Scholar 

  • Tkalec M, Štefanić PP, Cvjetko P, Šikić S, Pavlica M, Balen B (2014) The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLoS ONE 9:e87582. https://doi.org/10.1371/journal.pone.0087582

    Article  CAS  Google Scholar 

  • Tran TA, Popova LP (2013) Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk J Bot 37:1–13. https://doi.org/10.3906/bot-1112-16

    Article  CAS  Google Scholar 

  • Tsonev T, Lidon FJC (2012) Zinc in plants - an overview. Emir J Food Agric 24:322–333

    Google Scholar 

  • Umeoguaju UF, Ononamadu CJ, Okonkwo MC, Ezeigwe OC (2016) The survival of four tropical plants on soils artificially polluted with toxic levels of zinc. Int J Environ Sci Technol 5:17–24

    Google Scholar 

  • United States Environmental Protection Agency – USEPA (2007) Method 3051A (SW-846): microwave assisted acid digestion of sediments, sludges, and oils, revision 1. https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf. Accessed 29 March 2020

  • Vareda PJ, Valente AJM, Durães L (2019) Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. J Environ Manag 246:101–118

    Article  CAS  Google Scholar 

  • Verbruggen N, Juraniec M, Baliardini C, Meyer C-L (2013) Tolerance to cadmium in plants: the special case of hyperaccumulators. BioMetals 26:633–638. https://doi.org/10.1007/s10534-013-9659-6

    Article  CAS  Google Scholar 

  • Visconti D, Fiorentino N, Caporale AG, Stinca A, Adamo P, Motti R, Fagnano M (2019) Analysis of native vegetation for detailed characterization of a soil contaminated by tannery waste. Environ Pollut 252:1599e1608

    Article  Google Scholar 

  • Wan X, Lei M, Chen T (2016) Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci. Total Environ 563-564:796–802. https://doi.org/10.1016/j.scitotenv.2015.12.080

    Article  CAS  Google Scholar 

  • Wang M, Zhu Y, Cheng L, Andserson B, Zhao X, Wang D, Din A (2018) Review on utilization of biochar for metal-contaminated soil and sediment remediation. J Environ Sci 63:156–173

    Article  Google Scholar 

  • Watanabe Y, Nogawa K, Nishijo M, Sakurai M, Ishizaki M, Morikawa Y, Kido T, Nakagawa H, Suwazono Y (2020) Relationship between cancer mortality and environmental cadmium exposure in the general Japanese population in cadmium non-polluted areas. Int J Hyg Environ Health 223:65–70. https://doi.org/10.1016/j.ijheh.2019.10.005

    Article  CAS  Google Scholar 

  • Wiszniewska A, Hanus-Fajerska E, Muszyńska E, Ciarkowska K (2016) Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere 26:1–12. https://doi.org/10.1016/S1002-0160(15)60017-0

    Article  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  Google Scholar 

  • Xiong J, Madejón P, Madejón E, Cabrera F (2015) Assisted natural remediation of a trace element-contaminated acid soil: an eight-year field study. Pedosphere 25:250–262. https://doi.org/10.1016/S1002-0160(15)60010-8

    Article  CAS  Google Scholar 

  • Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729. https://doi.org/10.1016/j.proenv.2012.10.099

    Article  CAS  Google Scholar 

  • Zhang X, Yang L, Li Y, Li H, Wang W, Ye B (2012) Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ Monit Assess 184:2261–2273. https://doi.org/10.1007/s10661-011-2115-6

    Article  CAS  Google Scholar 

  • Zhang H, Zhang L-L, Li J, Chen M, An R-D (2020) Comparative study on the bioaccumulation of lead, cadmium and nickel and their toxic effects on the growth and enzyme defence strategies of a heavy metal accumulator, Hydrilla verticillata (L.f.) Royle. Environ Sci Pollut Res 27:9853–9865

    Article  CAS  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Funding

This study was given granting scholarships and has financially supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), (CAPES-PRINT - 88887.371138/2019-00, CAPES 88887.160998/2017-00) CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) 141228/2018-0, and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais). The authors would also like to thank the Laboratory of Electron Microscopy and Analysis of Ultrastructural Federal University of Lavras, (http://www.prp.ufla.br/labs/microscopiaeletronica/) and Finep, Fapemig, CNPq, and Capes for supplying the equipment and technical support for experiments involving electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Roberto Guimarães Guilherme.

Additional information

Responsible editor: Roberto Terzano

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 530 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, P.G., Martins, G.C., Moreira, C.G. et al. Interactions of cadmium and zinc in high zinc tolerant native species Andropogon gayanus cultivated in hydroponics: growth endpoints, metal bioaccumulation, and ultrastructural analysis. Environ Sci Pollut Res 27, 45513–45526 (2020). https://doi.org/10.1007/s11356-020-10183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10183-7

Keywords

Navigation