Skip to main content

Advertisement

Log in

Fish as bioindicators: coal and mercury pollution in Colombia’s ecosystems

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mining in Colombia affects 488,672 ha (298,391 in coal mining and 190,281 in gold mining). However, Colombia has insufficient studies on mining and its repercussions, which limits estimates of mining impacts on ecosystems and the human population. Due to the rise of mining activities in Colombia, the negative impacts generated by coal and Hg will also continue to increase. This review analyzes national information levels on coal and Hg in island/coastal/marine as well as freshwater ecosystems and human groups using fishery resources as a framework. This is because fish are the main source of animal protein in marine coastal-island and mainland communities. Here, 15 of 32 Colombian departments have records on total mercury (THg) in water, sediments, fish, and human communities. Around 205 ton/year of mercury is discharged into the ecosystem. In human hair for example (15.3 to 50.15 μg/g), mercury exceeds the international maximum levels allowed (ILA) and the national standard (5.0 μg/g). Mercury levels in freshwater fish show 3.3 μg/g of THg and levels in marine and coastal-island fish are 1.2 μg/g THg exceeding the ILA (0.5 μg/g) standard for fish that will be consumed. Carnivorous species have a THg between 0.04 and 2.55 μg/g suggesting bioaccumulation and magnification of heavy metals. These findings were then compared with available international information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams D, McMichael R (1999) Mercury levels in four species of sharks from Atlantic Coast of Florida. Fish Bull 97:372-379

    Google Scholar 

  • Agamez J (2015) Valoración del riesgo de contaminación con mercurio por el consumo de pescado en poblaciones pesqueras de Santa Ana y La Boquilla (Costa Atlántica colombiana). Trabajo de grado para optar al título de Magister en Química. Universidad de Cartagena. Cartagena. 99 p

  • Agudelo R (1993) Estudios sobre algunos efectos del carbón mineral sobre el medio marino. μo de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia. 102 p. En: Grijalba-Bendeck, M & A. Franco-Herrera. 2012. Aproximación al efecto del Carbón mineral no quemado en las comunidades ícticas. Universidad Jorge Tadeo Lozano, Expeditio. Santa Marta. No. 11: 55-65

  • Ahrens M, Morrisey D (2005) Biological effects of unburnt coal in the marine environment. Oceanogr Mar Biol Annu Rev 43:69-122

    Google Scholar 

  • Alonso D, Latorre S, Castillo E, Brandao P (2014) Environmental occurrence of arsenic in Colombia: a review. Environ Pollut 186:272-281

    CAS  Google Scholar 

  • Álvarez S (2013) Acumulación de Mercurio (Hg) en tejido muscular y hepática en especies ícticas en diferentes ciénagas del Magdalena medio. Trabajo de grado para optar al título de Magister en Ciencias Ambientales. Universidad de Antioquia. Medellín. 31 p

  • Álvarez-León R (2009) Efectos del aprovechamiento de metales preciosos en Colombia: Los metales pesados en las aguas continentales, estuarinas y marinas. Segundo congreso internacional sobre geología y minería en la ordenación del territorio y en el desarrollo. Ultrillas-2009: 67-84

  • Anjum N, Ahmad I, Válega M (2011) Impact of seasonal fluctuations on the sediment-mercury, its accumulation and partitioning in Halimione portulacoides and Juncus maritimus collected from Ria de Aveiro coastal lagoon (Portugal). Water Air Soil Pollut 222:1-15

    CAS  Google Scholar 

  • Arango-Aramburo S, Jaramillo P, Olaya Y, Smith R, Restrepo OJ, Saldarriaga-Isaza A, Arias-Gaviria J, Parra JF, Larsen ER, Gomez-Rios LM, Castellanos-Niño LY (2017) Simulating mining policies in developing countries: the case of Colombia. Socio Econ Plan Sci 60:99-113. https://doi.org/10.1016/j.seps.2017.04.002

    Article  Google Scholar 

  • Ardila C (2000) Determinación de Mercurio en organismos marinos de interés comercial y su relación con los niveles de la población de pescadores en algunas zonas del Pacífico Colombiano. Memoria para optar al grado de Doctora en Ciencias Biológicas. Universidad Complutense de Madrid. 138 p

  • Arias Espana VA, Rodriguez Pinilla AR, Bardos P, Naidu R (2018) Contaminated land in Colombia: a critical review of current status and future approach for the management of contaminated sites. Sci Total Environ 618:199-209. https://doi.org/10.1016/j.scitotenv.2017.10.245

    Article  CAS  Google Scholar 

  • Arnold M, Lindberg T, Liu Y, Porter K, Hsu-Kim H, Hinton D, Giulio R (2014) Bioaccumulation and speciation of selenium in fish and insects collected from a mountaintop removal coal mining-impacted stream in West Virginia. Ecotoxicology. 23:929-938

    CAS  Google Scholar 

  • Auld A, Schubel J (1978) Effects of suspended sediment on fish eggs and larvae: a laboratory assessment. Estuar Coast Mar Sci 6:153-164

    Google Scholar 

  • Auty RM (1998) Resource abundance and economic development: improving the performance of resource-rich countries. Helsinki: UNU World Institute for Development Economics Research

  • Azevedo JS, Fernández W, Farias L, Fávaro D, Braga E (2009) Use of Cathorops spixii as bioindicator of pollution of trace metals in the Santos Bay, Brazil. Ecotoxicology 18:577-586

    CAS  Google Scholar 

  • Banco de la República (2014) Producto Interno Bruto 2014. Retrieved November 4, 2015, from, http://www.banrep.gov.co/es/pib [Accessed Jul 2018].

  • Basu N, Horvat M, Evers DC (2018) A systematic review of mercury exposures in human populations worldwide between 2000 and 2018. 126:1-14. https://doi.org/10.1289/EHP3904

  • Bebbington A (2011) Social conflict, economic development and the extractive industry: evidence from South America, vol. 9. Routledge

  • Belles-Isles M, Ayotte P, Dewailly E, Weber J, Roy R (2002) Cord blood lymphocyte functions in newborns from a remote maritime population exposed to organochorines and methylmercury. J Toxicol Environ Health A 65(2):165-182

    CAS  Google Scholar 

  • Bharti S, Kumar T (2011) Bioaccumulation of metals in the edible catfish Heteropneustes fossilis (Bloch) exposed to coal mine effluent generated at northern coalfield limited, Singrauli, India. Bull Environ Contam Toxicol 87:393-398

    CAS  Google Scholar 

  • Bjerregaard P, Hansen J (2000) Organochlorines and heavy metals in pregnant women from the Disko Bay area in Greenland. Sci Total Environ 245(1):195-202

    CAS  Google Scholar 

  • Bjornberg K, Vahter M, Petersson-Grawé K, Glymm A, Cnattingius S, Darmerud P, Atuma S, Becker W, Berglund M (2003) Methyl mercury and inorganic mercury in Swedish pregnant women and in cord blood: influence of fish consumption. Environ Health Perspect 111(4):637-641

    Google Scholar 

  • Bosch A, O’Neil B, Sigge G, Kerwath S, Hoffman L (2016) Heavy metal accumulation and toxicity in smoothhound (Musteles musteles) shark from Langebaan Lagoon, South Africa. Food Chem 190:871-878

    CAS  Google Scholar 

  • BP (2015) BP statistical review of world energy. London.

  • Branco V, Canário J, Vale C, Raimundo J, Reis C (2004) Total and organic mercury concentrations in muscle tissue of the blue shark (Prionace glauca L. 1758) from the Northeast Atlantic. Mar Pollut Bull 49:854-874

    Google Scholar 

  • Bresler V, Feldstein T, Kashman Y, Abelson A, Fishelson L, Mokady O, Erel Y (2003) Marine mollusks in environmental monitoring: trace metals and organic pollutants in animal tissue and sediments. Helgol Mar Res 57:212-219

    Google Scholar 

  • Brosse S, Grenouillet G, Gevrey M, Khazraie K, Tudesque L (2011) Small-scale gold mining erodes fish assemblage structure in small neotropical streams. Biodivers Conserv 20:1013-1026

    Google Scholar 

  • Butler W, Houseman J, Seddon L, McMullen E, Tofflemire K, Mills C, Corriveau A, Weber J, LeBlanc A, Walter M, Donaldson S, Van Oostdam J (2006) Maternal and umbilical cord blood levels of mercury, lead, cadmium and essential trace element trace elements in Arctic. Environ Res 100(3):295-318

    Google Scholar 

  • Caballero-Gallardo K, Guerrero-Castilla A, Johnson-Restrepo B, de la Rosa J, Olivero-Verbel J (2015) Chemical and toxicological characterization of sediments along a Colombian shoreline impacted by coal export terminals. Chemosphere 138:837-846

    CAS  Google Scholar 

  • Cala P (2001) Occurrence of mercury in some comercial fish species from Magdalena and Meta Rivers in Colombia. Rev Asoc Colomb Ictiol 4:15-19

    Google Scholar 

  • Campbell P, Devlin R (1997) Increased CYPAI and ribosomal protein L5 gene expression in a teleost: the response of juvenile Chinook salmon to coal dust exposure. Aquat Toxicol 38:1-15

    CAS  Google Scholar 

  • Campos N (1990) La contaminación por metales pesados en la Ciénaga Grande de Santa Marta, Caribe colombiano. Universidad Nacional de Colombia. Santa Marta Caldasia 16(77):231-244

    Google Scholar 

  • Canli M, Atli G (2003) The relationship between heavy metals (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environ Pollut 121:129-136

    CAS  Google Scholar 

  • Canli M, Kalay M (1998) Levels of heavy metals (Cb, Pb, Cu, Cr and Ni) in tissue of Cyprinus carpio, Barbus capito and Chondrostoma reium from the Seyhan River, Turkey. Tr J Zoology 22:149-157

    CAS  Google Scholar 

  • Carlson R, Oyler A, Gerhart E, Caple R, Welch K, Kopperman H, Bodenner D, Swanson D (1979) Implications to the aquatic environment of polynuclear aromatic hydrocarbons liberated from great plains coal. United States Environmental Protection Agency Report No. 600/3-79-093

  • Casas I, Gómez E, Rodríguez L, Girón S, Mateus J (2015) Hacia un plan nacional para el control de los efectos del Mercurio en la salud en Colombia. Biomédica. 35:30-37

    Google Scholar 

  • Casseres S (2013) Modelado de la dispersión y acumulación de polvillo de carbóngenerado por un puerto carbonífero en el Tajamar occidental de Bocas de Ceniza, delta del río Grande de la Magdalena, Colombia. Trabajo de grado para optar al título de Biólogo Ambiental. Universidad Jorge Tadeo Lozano. 36 p

  • Castaño A, Cutanda F, Esteban M, Part P, Navarro C, Gómez S, Rosado M, López A, López E, Ecley K, Schindler B, Govarts E, Casteleyn L, Kolossa-Gehring M, Fiddicke U, Koch H, Angerer J, Den E, Schoeters G, Fiddicke U, Koch H, Sepai O, Hovart M, Knudsen L, Aerts D, Joas A, Biot P, Joas R, Jiménez-Guerrero J, Diaz G, Pirard C, Katsonouri A, Cerna M, Gutleb A, Ligocka D, Reis F, Berglund M, Lupsa I, Halzlová K, Charlier C, Cullen E, Hadjipanayis A (2015) Fish consumption patterns and hair mercury levels in children and their mothers in 17 EU countries. Environ Res 141:58-68

    Google Scholar 

  • Castro-González M, Campos N (2004) Efecto del Cadmium y el Cobre sobre el flujo de nitrógeno y fósforo en la interfase agua-sedimento en una laguna costera tropical. Rev Acad Colomb Cienc 28(109):535-543 ISSN: 0370-3908

    Google Scholar 

  • Chen CY, Driscoll CT, Eagles-Smith CA, Eckley CS, Gay DA, Hsu-Kim H, Keane SE, Kirk JL, Mason RP, Obrist D, Selin H, Selin NE, Thompson MR (2018) A critical time for mercury science to inform global policy. Environ Sci Technol 52:9556-9561. https://doi.org/10.1021/acs.est.8b02286

    Article  CAS  Google Scholar 

  • Cogua R (2011) Estudio comparativo del flujo de Mercurio a través de redes detritívoras y planctívoras en un estuario tropical. Tesis. Biol. Mar. UN. 150 p

  • Cogua P, Campos N, Duque G (2012) Total mercury and methylmercury concentration in sediment and sesión of Bahía de Cartagena, Colombian. Bol Invermar 41:267-285

    Google Scholar 

  • Cogua P, Jiménez-Reyes M, Duque G (2013) Relaciones tróficas de cinco especies de interés comercial en la Bahía de Cartagena, Caribe colombiano. Bol Invest Mar Cost 42(1):185-192

    Google Scholar 

  • Combariza D (2009) Contaminación por metales pesados en el embalse del Muña y su relación con los niveles en Sangre de Plomo, Mercurio y Cadmio y alteraciones de salud en los habitantes del municipio de Sibaté (Cundinamarca) 2007. Tesis de grado para optar al título de Magister en Toxicología. Universidad Nacional de Colombia. Bogotá. 115 p

  • Cordy P, Veiga MM, Salih I, Al-Saadi S, Console S, Garcia O, Mesa LA, Velásquez-López PC, Roeser M (2011) Mercury contamination from artisanal gold mining in Antioquia, Colombia: the world’s highest per capita mercury pollution. Sci Total Environ 410:154-160

    Google Scholar 

  • Dallinger R, Prosi F, Segner H, Back H (1987) Contaminated food and uptake of heavy metals by fish: a review and a proposal for further research. Oecologia. 73:91-98

    CAS  Google Scholar 

  • DANE (2016) Información estadística, exportaciones. Department Administrativo Nacional de Estadísticas. URL: http://www.dane.gov.co/index.php/comercio-exterior/exportaciones (Consultado en: 23 de Mayo/2016)

  • Daniels J, Longnecker M, Rowland A, Golding J (2004) Fish intake during pregnancy and early cognitive development of offspring. Epidemiology. 15(4):394-402

    Google Scholar 

  • Delongchamp T, Lean D, Ridal J, Blais J (2009) Sediment mercury dynamics and historical trends of mercury deposition in the St. Lawrence River area of concern near Cornwall, Ontario, Canada. Sci Total Environ 407:4095-4104

    CAS  Google Scholar 

  • Dickman M, Leung K (1998) Mercury and organochlorine exposure from fish consumption in Hong Kong. Chemosphere. 37:991-1015

    CAS  Google Scholar 

  • Díez S, Montuori P, Pagano A, Sarnacchiaro P, Bayona J, Triassi M (2008) Hair mercury levels in an urban population from southern Italy: fish consumption as a determinant of exposure. Environ Int 34:162-167

    Google Scholar 

  • Dural M, Ziya M, Akif A (2007) Investigation of heavy metal levels in economically important species captured from the Tuzla lagoon. Food Chem 102:415-421

    CAS  Google Scholar 

  • Eagles-Smith CA, Silbergeld EK, Basu N, Bustamante P, Diaz-Barriga F, Hopkins WA et al (2018) Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio 47(2):170-197, PMID: 29388128. https://doi.org/10.1007/s13280-017-1011x

    Article  Google Scholar 

  • Elhamri H, Idrissi L, Coquery M, Azemard S, El Abidi A, Benlemlih M, Saghi M, Cubadda F (2007) Hair mercury levels in relation to fish consumption in a community of the Moroccan Mediterranean Coast. Food Addit Contam 24:1236-1246

    CAS  Google Scholar 

  • Escobar O (2010) Bioacumulación y biomagnificación de Mercurio y Selenio en peces pelágicos mayores de la costa occidental de baja California Sur, México. Tesis de grado para optar al grado de Doctorado en ciencias marinas. México. 144 p

  • Escobar M (2015) El drama de los “hombres de Mercury” (17 de diciembre, 2015). El Tiempo. 6-7 p

  • Establier R (1972) Concentración de Mercurio en los tejidos de algunos peces, moluscos y crustáceos del golfo de Cádiz y caladeros del noroeste africano. Investig Pesq 36(2):355-364

    CAS  Google Scholar 

  • Establier R (1973) Nueva aportación sobre el contenido en Mercurio de peces, moluscos y crustáceos del golfo de Cádiz y caladeros de la costa oeste africana. Investig Pesq 37(1):107-114

    CAS  Google Scholar 

  • Fakour H, Sayeri F (2010) Mercury exposure assessment in Iranian women’s hair of a port town with respect to fish consumption and amalgam fillings. Sci Total Environ 408:1538-1543

    CAS  Google Scholar 

  • Ferreira M, Teixeira E, Nepomuceno A, Borges S, Carmona de Sao S, Conte C (2012) Mercurio total em pescado marinho do Brazil. R. B.as. Ci Vet 19: 50-58

  • Ferreri P, Stauffer J, Stecko T (2004) Evaluating impacts of mountain top removal/valley fill coal mining on stream fish populations. Proceeding America Society of Mining and Reclamation. 576-592

  • FES (2014) La Minería de Carbón a Gran Escala En Colombia: Impactos Económicos, Sociales, Laborales, Ambientales y Territoriales. Analisis 1/2014. Bogotá: Friedrich Ebert Stiftung

  • Figueruelo J, Dávila M (2004) Química Física del ambiente y de los procesos medioambientales. Reverté. Spain. 619p

  • Forman R, Sperling D, Bissonete J, Clevenger A, Cutshall C, Dale V (2003) Road ecology. Island Press, London, p 504

    Google Scholar 

  • Franco-Herrera A, Grijalba Bendeck M, Ibañez J, Daza J (2011) Carbón, clima, playas y peces. El caso de la zona costera del Departamento del Magdalena. Bogotá D.C. Editorial Imageprinting Ltda. 186p

  • Fthenakis V, Lipfert F, Moskowitz P, Saroff L (1995) An assessment of mercury emission and healt risk from a coal-fired power plant. J Hazard Mater 44:267-283

    CAS  Google Scholar 

  • Galiano-Sedano F (1976) Investigación sobre el contenido de Mercurio en aguas de ríos colombianos. Proy. IIT/Colgate Palmolive/COLCIENCIAS. Bogotá (Colombia). Informe Técnico; 1976

  • Gerhart E, Liukkonen R, Carlson R, Stokes G, Lukasewycz M, Oyler A (1981) Histological effects and bioaccumulation potential of coal particulate-bound phenanthrene in the feathead minnow Pimephales promelas. Environ Pollut A 25:165-180

    CAS  Google Scholar 

  • Gómez Q, Martínez R, Podlesky E (1995) Informe técnico Mercurio: un contaminante ambiental ubicuo y peligroso para la salud humana. Biomédica. 15(3):183-190

    Google Scholar 

  • Gómez-Luna E, Fernando-Navas D, Aponte-Mayor G, Betancourt-Buitrago L (2014) Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización. Dyna rev Fac nac Minas 81(184):158-163

    Google Scholar 

  • González S (2015) Los números de la minería en el país (25 de Abril, 2015). El Espectador

  • Gonzalez-Macias C, Schifter I, Lluch-Cota D, Mendez-Rodriguez L, Hernandez-Vazquez S (2006) Distribution, enrichment and accumulation ofheavymetals incoastal sediments of Salina Cruz Bay, Mexico. Environ Monit Assess 118(1):211-230

    CAS  Google Scholar 

  • Gracia L, Marrugo J, Alvis E (2010) Contaminación por Mercurio en humanos y peces en el municipio de Ayapel, Córdoba, Colombia, 2009. Rev Fac Nac Salud Pública 28(2):118-124

    Google Scholar 

  • Greeley M, Adams M, Elmore L, McCracken M (2016) Influence of metal (loid) bioaccumulation and maternal transfer on embryo-larval development in fish exposed to a major coal ash spill. Aquat Toxicol 173:165-177

    CAS  Google Scholar 

  • Grijalba-Bendeck M, Franco-Herrera A (2012) Aproximación al efecto del Carbón mineral no quemado en las Comunidades ícticas. Universidad Jorge Tadeo Lozano, Expeditio. Santa Marta 11:55-65

    Google Scholar 

  • Guan Y, Shao C, Ju M (2014) Heavy metal contamination assessment and partition for industrial and mining gathering areas. Int J Environ Res Public Health 11(7):7286-7303

    CAS  Google Scholar 

  • Guentzel J, Portilla E, Keith K, Keith E (2007) Mercury transport and bioaccumulation in riverbank communities of the Alvarado Lagoon System, Veracruz State, Mexico. Sci Total Environ 388:316-324

    CAS  Google Scholar 

  • Guerrero E, Restrepo M, Podlesky E (1981) Contaminación por Mercurio de la Bahía de Cartagena. Informe técnico:144-154

  • Guerrero-Castilla A, Olivero-Verbel J, Marrugo-Negrete J (2014) Heavy metals in wild house mice from coal-mining areas of Colombia and expression of genes related to oxidative stress, DNA damage ad exposure to metals. Mutat Res 762:24-29

    CAS  Google Scholar 

  • He B, Liang L, Jiang G (2002) Distributions of arsenic and selenium in selected Chinese coal mines. Sci Total Environ 296:19-26

    CAS  Google Scholar 

  • Herbert D, Richards J (1963) The growth and survival of fish in some suspensions of solids of industrial origin. J Air Wat Poll 7:297-302

    CAS  Google Scholar 

  • Hernández A, Jébrak M, Higueras P, Oyarzun R, Morata D, y Munha J (1999) The Almadén mercury mining district. Spain Miner Depos 34:539-548

  • Higgins J, Green S (Eds) (2011) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. The Cochrane Collaboration.639 p

  • Hollis L, Burnisonb K, Playlea R (1996) Does the age of metal-dissolved organic carbon complexes influence binding of metals to fish gills? Aquatic Tox 35:253-264

    CAS  Google Scholar 

  • Holm J, Palace V, Wautier K, Evans R, Baron C, Podemski C, Siwik P, Sterling G (2003) An assessment of the development and survival of wild rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) exposed to elevated selenium in an area of active coal mining. Institute of Marine Research Postboks.Bergen, Norway. 257-273

  • Hopkins W, Snodgrass J, Roe J, Staub B, Jackson B, Congdon J (2002) Effects of food ration on survival and subletal responses of Lake Chubsuckers (Erimyzon sucetta) exposed to coal combustion wastes. Aquat Toxicol 57:191-202

    CAS  Google Scholar 

  • Houda B, Dorra G, Chafei A, Emna A, Khaled M (2011) Impact of a mixed “industrial and domestic” wastewater effluent on the southern coastal sediments of Sfax (Tunisia) in the Mediterranean Sea. Int J Environ Res 5(3):691-704

    CAS  Google Scholar 

  • Hsu C, Liu L, Chien L, Chou S, Han B (2007) Mercury concentration and fish consumption in Taiwanese pregnant women. Bjog. 114(1):81-85

    CAS  Google Scholar 

  • Hughes G (1975) Coughing in the rainbow trout (Salmo gairdnerii) and the influence of pollutans. Rev Suisse Zool 82:47-64

    CAS  Google Scholar 

  • IDEAM (2015) Estudio Nacional del Agua 2014. Instituto de Hidrología, Meteorología y Estudios Ambientales p 259

  • Idrovo A, Manotas L, Villamil G (2001) Niveles de Mercurio y percepción del riesgo en una población minera aurífera del Guainía Orinoquía colombiana. Biomédica. 21:134-141

    Google Scholar 

  • IEA (2014) Key world energy statistics. International Energy Agency, Paris

    Google Scholar 

  • INS (2015) Instituto Nacional de Salud, Grupo de Evaluación de Riesgos en Inocuidad de Alimentos. Evaluación de riesgo de mercurio en Peces de aguas continentales en Colombia. Página. Bogotá, D. C., Colombia. 60 p

  • International Council on Mining & Metals (2012) Trends in the mining and metals industry: mining's contribution to sustainable development

  • INVEMAR (1988) Diagnóstico actual de las Comunidades marinas de la Bahía de Portete, análisis de efectos reales por la construcción y operación de las instalaciones portuarias. Instituto de Investigaciones Marinas y costeras. Santa Marta, Informe final. 157p

  • INVEMAR (1992) Descripción inicial de las unidades de monitoreo de ecosistemas marinos en la Bahía de Portete. Determinación del área de influencia de Puerto Bolívar afuera de la Bahía de Portete. Instituto de Investigaciones Marinas y costeras. Santa Marta, Informe técnico

  • INVEMAR (2002) Informe ambiental preliminar del hundimiento de la barcaza “Caribe-217” cargada con Coal en el puerto de Santa Marta, Abril 11 del 2002. Instituto de Investigaciones Marinas y costeras. Informe técnico. Santa Marta. 405p

  • Johnson C, Sallsten G, Schutz A, Sjors A, Barregard L (2004) Hair mercury levels versus freshwater fish consumption in household members of swdish angling societies. Environ Res 96:257-263

    Google Scholar 

  • Kim E, Manson R, Porter E, Soulen H (2006) The impact of resuspension on sediment mercury dynamics, and methylmercury production and fate: a mesocosm study. Mar Chem 102:300-315

    CAS  Google Scholar 

  • Kirby J, Maher W, Harasti D (2001) Changes in selenium, copper, cadmium, and zinc concentrations in mullet (Mugil cephalus) from the southern basin of Lake Macquarie, Australia, in response to alteration of coal-fired power station fly ash handling. Arch Environ Contam Toxicol 41:171-181

    CAS  Google Scholar 

  • Lalonde B, Ernst W (2011) Trace metal concentrations in sediments and fish in the vicinity of ash lagoon discharges from coal-combustion plants in New Brunswick and Nova Scotia, Canada. Arch Environ Contam Toxicol 61:472-481

    CAS  Google Scholar 

  • Lasso C, Morales-Betancourt M (2011) Catálogo de los recursos pesqueros continentales de Colombia: memoria técnica y explicativa. Instituto de Investigación de los Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D.C. 120 p.

  • Lasso C, Agudelo E, Jiménez-Segura L. F, Ramírez-Gil H, Morales-Betancourt V, Ajiaco-Martínez R. E, Gutiérrez F. de P, Usma J. S, Muñoz S. E, Sanabria-Ochoa A. I (Eds.) (2011) Catálogo de los recursos pesqueros continentales de Colombia. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de los Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D.C. 304 p.

  • León G, Pérez L, Linares J, Hartmann A, Quintana M (2007) Genotoxic effects in wild rodents (Rattus rattus and Mus musculus) in an open coal mining area. Mutat Res 630:42-49

    Google Scholar 

  • Llorente B, Virseda V, Peral J, Sanz G, Ruíz T, López C (2011) Metil Mercury en cabello de la población infantil. Sanidad Militar 67:299-303

    Google Scholar 

  • Lohner T, Reash R, Willet E, Fletcher J (2001) Assessment of tolerant sunfish populations (Lepomis sp.) inhabiting Selenium-laden coal ash effluents: 3. Serum chemistry and fish health indicators. Ecotox Environ Safe 50:225-232

    CAS  Google Scholar 

  • Lope V, Pollán M, Fernández M, de León A, González M, Sanz J, Iriso A, Pérez-Meixeira A, Gil E, de Paz C, Cisneros M, de Santos A, Asensio A, Astray J, Martínez M, García J, López-Abente G, García-Sagredo J, Aragonés N (2010) Cytogenetic status in newborns and their parents in Madrid: the BioMadrid Study. Environ Mol Mutagen 51(4):267-277

    CAS  Google Scholar 

  • López A, Suarez OJ, Hoyos M, Montes C (2012) Perfil nacional de sustancias químicas en Colombia. 2nd ed. United Nations Industrial Development Organization & Ministerio de Ambiente y Desarrollo Sostenible, Bogotá D.C.

  • López S, Abarca N, Meléndez R (2013) Heavy metal concentrations of two highly migratory sharks (Prionace glauca and Isurus oxyrinchus). In the southeastern Pacific waters: comments on public health and conservation. Tropical Conservation Science 6(1):126-137

    Google Scholar 

  • Lozano-Quiroga H (1987) Minerales de mercurio. 275-294 pp. En: Villegas-Betancourt, A. (ed.) Recursos minerales de Colombia. Min. Minas y Energía-INGEOMINAS. Publ. Geol. Esp., 1, Tomo 1. Bogotá D. E. (Colombia), 564p.

  • Luckhurst B, Prince E, Llopiz J, Snodgrass D, Brothers B (2006) Evidence of blue marlin (Makaria nigricans, Lacepede, 1803) spawning in Bermuda waters and elevated mercury levels in large specimens. B Mar Sci 79(3):691-704

    Google Scholar 

  • Luczynska J, Luczynski M, Paszcyk B, Tonska E (2016a) Assessment of mercury in muscles, liver and gills of marine and freshwater fish. J Elem 21(1):113-129

    Google Scholar 

  • Luczynska J, Luczynski M, Paszcyk B, Tonska E (2016b) Concentration of mercury in muscles of predatory and non-predatory fish from Lake Pluszne (Poland). J. Vet. Res. 60: 43-47

  • Malm O (1998) Gold mining as a source of mercury exposure in the Brazilian Amazon. Environ Res 77:73-78

  • Mancera-Rodríguez NJ, Álvarez-León R (2003) Estado del conocimiento de las concentraciones de metales pesados en los peces de agua dulce de Colombia, pp. 52 En: Mem. VIII Simp. Colombiano de Ictiología. ACICTIOS/UDC. Montería (Córdoba) Colombia, mayo 19-21 (resumen).

  • Mancera-Rodríguez N, Álvarez-León R (2005) Estado del conocimiento de las concentraciones de hidrocarburos y residuos organoclorados en los peces de agua dulce de Colombia. Dahlia. Rev Asoc Colomb Ictiol 8:89-103

    Google Scholar 

  • Mancera-Rodríguez N, Álvarez-León R (2006) Estado del conocimiento de las concentraciones de Mercurio y otros metales pesados en peces de agua dulce de Colombia. ActaBiol Colomb 11(1):3-23

    Google Scholar 

  • Marcano V, Troconis A (2001) Evaluación del contenido de Mercurio en el pescado expendido en la ciudad de Mérida, Venezuela. Rev Bio Lat Am 8(2):15-24

    Google Scholar 

  • Marrugo-Negrete J, Navarro-Frómeta A, Ruiz-Guzmán J (2015) Total mercury concentrations in fish from Urrá reservoir (Sinú river, Colombia). Six years of monitoring. Rev MVZ Córdoba 20(3):4754-4765

    CAS  Google Scholar 

  • Martin L, Black M (1998) Biomarker assessment of the effects of coal strip-mine contamination on channel catfish. Ecotox Environ Safe 41:307-320

    CAS  Google Scholar 

  • MAVDT (2010) Política Nacional para la Gestión Integral del Recurso Hídrico. Ministerio de Ambiente, Vivienda y Desarrollo Territorial Bogotá, D.C. Colombia, Ministerio de Ambiente, vivienda y Desarrollo Territorial. Colombia. 124p.

  • MAVDT, Universidad de Antioquia (2010) Cuantificación de liberaciones antropogénicas de Mercurio en Colombia. Cálculos y cuantificación para el año 2009. Versión 1.0. Bogotá, D.C. 83 p.

  • Mendiburú Z, Acereto E, López V, Guillermo R (2011) Mercurio total en Cabello de cirujanos dentistas de práctica general del Estado de Yucatán, México. Rev Odontológica Latinoamericana 3:11-16

    Google Scholar 

  • Mergler D, Anderson HA, Chan LH, Mahaffey KR, Murray M, Sakamoto M et al (2007) Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36(1):3-11, PMID: 17408186. https://doi.org/10.1579/0044-7447

    Article  CAS  Google Scholar 

  • Miklavcic A, Casetta A, Tratnik J, Mazej D, Krsnik M, Mariuz M, Sofianou K, Spiric Z, Barbone F, Horvat M (2013) Mercury, arsenic and selenium exposure levels in relation to fish consumption in the Mediterranean area. Environ Res 120:7-17

    CAS  Google Scholar 

  • Ministerio de Ambiente y Desarrollo Sostenible (2016) Diseño de una estrategia comprensiva para el manejo de pasivos ambientales en Colombia. Bogotá.

  • Montoya JD (2010) Actividades economicas de Colombia. Actividades Economicas Retrieved 06/04, 2016, from. http://www.actividadeseconomicas.org/2012/03/ principales-actividades-economicas-de.html.

  • Mørck T, Nielsen F, Nielsen J, Jensen J, Hansen P, Christoffersen L, Siersma V, Larsen I, Hohlmann L, Skaanild M, Frederiksen H, Biot P, Casteleyn L, Kolossa-Gehring M, Schwedler G, Castaño A, Angerer J, Koch H, Esteban M, Schoeters G, Den E, Exley K, Sepai O, Bloemen L, Joas R, Joas A, Fiddicke U, López A, Cañas A, Aerts D, Knudsen L (2015) The Denish contibution to the European DEMOCOPHES Project: a description of cadmium, cotinine and mercury levels in Denish mother-child pairs and the perspectives of supplementary sampling and measurements. Environ Res 141:96-105

    Google Scholar 

  • Morelli S, Garay LJ, Zamora LGRLJEE, Rodríguez JAM, Becerra LAP, Morales JF, et al. (2013) Minería en Colombia: Institucionalidad y territorio, paradojas y conflictos.

  • Morillo J, Usero J, Gracia I (2004) Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere. 55(3):431-442

    CAS  Google Scholar 

  • Mosquera-Lozano Y, Torres-Ibarguen A, Lozano-Largacha Y, Pereamena B (2005) Inicidencia del Mercurio por la explotación minera en algunas especies de peces en el Condoto river, Chocó-Colombia. En: Memorias del VIII Simposio Colombiano de Ictiología. ACICTIOS/UTCH. Quibdó (Chocó) Colombia.

  • Muckle G, Ayotte P, Dewailly E, Jacobson S, Jacobson J (2001) Domain-specific effects of prenatal exposure to PCBs, mercury and lead on infant cognition: Results from the environmental contaminants and child development study in Nunavik. Environ Health Perspect 109(12):1291-1299

    CAS  Google Scholar 

  • Nakagawa R, Yumita Y, Hiromoto M (1997) Total mercury intake from fish and shellfish by japanese pople. Chemosphere. 35:2909-2913

    CAS  Google Scholar 

  • Nakajima T, Hasegawa H, Takanashi H, Ohki A (2013) Ecotoxicity of effluents from hydrothermal treatment process for low-rank coal. Fuel. 104:36-40

    CAS  Google Scholar 

  • Nasrabadi T, Nabi Bidhendi G, Karbassi A, Mehrdadi N (2010) Evaluating the efficiency of sediment metal pollution indices in interpreting the pollution of Haraz River sediments, southern Caspian Sea basin. Environ Monit Assess 171(1):395-410

    CAS  Google Scholar 

  • Nobi E, Dilipan E, Thangaradjou T, Sivakumar K, Kannan L (2010) Geochemical and geo-statistical assessment ofheavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuar Coast Shelf Sci 87(2):253-264

    CAS  Google Scholar 

  • Oei PY, Mendelevitch R (2018) Prospects for steam coal exporters in the era of climate policies: a case study of Colombia. Clim Pol 3062:1-19. https://doi.org/10.1080/14693062.2018.1449094

    Article  Google Scholar 

  • Oliveriro J, Johnson B, Mendoza B, Olivero R (2001) Mercury Pollution in Colombia. CS-3 In: Abstracts 6th Internal. Conference on Mercury as a Global Pollutant. Minamata (Japón); 2001

  • Olivero J, Johnson B (2002) El lado gris de la minería del oro: La contaminación con mercurio en el norte de Colombia. Universidad de Cartagena; Cartagena. 394p.

  • Olivero J-Verbel J, Carranza-López L, Karina Caballero-Gallardo K, Pipoll-Arboleda A, Ripoll-Arboleda A, Muñoz-Sosa D (2016) Human exposure and risk assessment associated with mercury pollution in the Caquetá River, Colombian Amazon. Environ Sci Pollut Res. https://doi.org/10.10007/s11356-016-7255-3

  • Olivero J, Solano B (1998) Mercury in environmental samples from a waterbody contaminated by gold mining in Colombia, South America. Sci Total Environ 217:83-89

    CAS  Google Scholar 

  • Olivero J, Mendonza C, Mestre J (1995) Mercurio en cabello de diferentes grupos ocupacionales en una zona de minería aurífera en el Norte de Colombia. Rev Salud Pública 29(5):376-379

    CAS  Google Scholar 

  • Olivero-Verbel J, Solano B, Navas V, Pérez A (1996) Mercury levels in muscle of some fishes species from the Dique Chane. In: 2nd. Internal. Symp. Environmental Geochemistry in Tropical Countries, INGEOMINAS / IDEAM/UFF/OPS. Cartagena (Bol.) Colombia Nov. 18-21. 127p.

  • Otter R, Bailey F, Fortner A, Adams M (2012) Trophic status and metal bioaccumulation differences in multiple fish species exposed to coal ash-associated metals. Ecotox Environ Safe 85:30-36

    CAS  Google Scholar 

  • Pacheco J (2011) Determinación de la toxicidad aguda (CL50) del extracto de polvillo de carbón frente a larvas de Artemia franciscana. Trabajo de grado para optar al título de Magister en Toxicología. Universidad Nacional de Colombia, Cartagena. 70 p.

  • Palacio J, Aguirre N, Barrera J (2002) Efectos tóxicos de la exposición aguda de Prochilodus magdalenae a cloruro de mercurio. Actual Biol 24(77):33-38

    Google Scholar 

  • Parra J, Espinosa L (2008) Distribución de metales pesados (Pb, Cd y Zn) en perfiles de sedimento asociado a Rhizophora mangle en el río Sevilla - Ciénaga Grande de Santa Marta, Colombia. Bol Invest Mar Cost 37(1):95-110

    Google Scholar 

  • Pezo D (1992) Determinación de metales pesados bioacumulables en especies ícticas de consumo humano en la Amazonía peruana. Folia Amazónica 4(2):171-181

    Google Scholar 

  • Pinheiro M, Muller R, Sarkis J, Vieira J, Oikawa T, Gomes M, Guimaraes G, Nascimento J, Silveira L (2005) Mercury and selenium concentrations in hair samples of women in fertile age from Amazon Riverside communities. Sci Total Environ 349:284-288

    CAS  Google Scholar 

  • Pirard C, Koppen G, De Cremer K, Overmeire I, Govarts E, Dewolf M, De Mieroop E, Aerts D, Biot P, Casteleyn L, Kolossa-Gehring M, Schwedler G, Angerer J, Koch H, Schindler B, Castaño A, Esteban M, Schoeters GG, Den E, Sepai O, Exley K, Hovart M, Bloemen L, Knudsen L, Joas R, Joas A, Van J, Charlier C (2014) Hair mercury, and urinary cadmium levels in Belgian children and their mothers within the framework of the COPHES/DEMOCOPHES projects. Sci Total Environ 15(472):730-740. https://doi.org/10.1016/j.scitotenv.2013.11.028

    Article  CAS  Google Scholar 

  • PNUMA, Ministerio de Ambiente (2012) Sinopsis nacional de la minería aurífera artesanal y de pequeña escala Bogotá: Ministerio de Ambiente y Desarrollo Sostenible.

  • Porvari P (1995) Mercury levels of fish in Tucuruí hydroelectric reservoir and river Mojú in Amazonia, in the state of Pará, Brazil. Sci Total Environ 175:109-117

    CAS  Google Scholar 

  • Pouilly M, Rejas D, Pérez T, Duprey J, Molina C, Hubas C, Guimaraes J (2013) Trophic structure and mercury biomagnification in tropical fish assemblages, Iténez River, Bolivia. PLoS One 8(5):e65054

    CAS  Google Scholar 

  • Pradilla G, Vesga E, Gamboa N (1991) Estudio neuroepidemiológico y neurotoxocológico de una población minera con exposición crónica al Mercurio. Grupo de Neurotoxicología. UIS. 182-190.

  • Prieto G, Gonzalez M (1998) Diagnosis of environmental problems related to vein goldmining in Colombia. Environmental Geochemistry in the Tropics. Springer, Berlin Heidelberg, pp. 185-191.

  • Ramírez-González A (1993) Oleoducto Vasconia-Coveñas: Estudio de línea base, componentes biológicos y fisicoquímicos de los ecosistemas acuáticos. ECOPETROL /ICP/Oleoducto de Colombia S.A./Biología Aplicada/Ecology Ltda. Bogotá (Colombia). En: Mancera-Rodríguez, N & R. Álvarez-León, R. 2006. Estado del conocimiento de las concentraciones de Mercurio y otros metales pesados en peces de aguas dulces de Colombia. Acta Biol. Colomb. 11(1): 3-23.

  • Rashed M (2001) Monitoring of environmental heavy metals in fish from Nasser Lake. Environ Int 27:27-33

    CAS  Google Scholar 

  • Rhainds M, Levallois P, Dewailly E, Ayotte P (1999) Lead, mercury and organochlorine compound levels in cord blood in Québec, Canada. Arch Environ Heatlth 54(1):40-47

    CAS  Google Scholar 

  • Richard S, Aenoux A, Cerdan P, Reynouard C, Horeau V (2000) Mercury levels of soils, sediments and fish in French Guiana, South America. Water Air Soil Pollut 124:221-244

    CAS  Google Scholar 

  • Rincón J (2002) El Carbón y su problemática ambiental. Rev Acad Colomb Cienc 26(99):271-278

    Google Scholar 

  • Rosa C, Marrugo J (2015) Efectos genotóxicos asociados a metales pesados en una población humana de la región de La Mojana, Colombia, 2013. Biomédica. 35:139-151

    Google Scholar 

  • Ruíz C, Romero G, Guevara M (1996) Contaminación de peces por metales pesados en el río Magdalena. Licania Arbórea 1(1):18-22

    Google Scholar 

  • Sackett D, Aday D, Rice J (2010) Does proximity to coal-fired power plants influence fish tissue mercury? Ecotoxicology. 19:1601-1611

    CAS  Google Scholar 

  • Sagiv S, Thurston S, Bellinger D, Amarasiriwardena C, Korrick S (2012) Prenatal exposure to mercury and fish consumption during pregnancy and ADHD-related behavior in children. Arch Pediatr Adolesc Med 166(66):1123-1131

    Google Scholar 

  • Sakamoto M, Kaneoka T, Murata K, Nakai K, Saton H, Akagi H (2006) Correlations between mercury concentrations in umbilical cord tissue and other biomarkers of fetal exposure to methylmercury in the Japanesse population. Environ Res 103(1):106-111

    Google Scholar 

  • Sánchez H (2009) Comparación de dos métodos de determinación de mercurio total en cabello por espectroscopía de absorción atómica con generador de hidruros y diferencial de efecto zeeman con pirolizador. Trabajo de grado para optar al título de magíster en toxicología. Universidad Nacional de Colombia. Bogotá. 182 p.

  • Sánchez M (2011) Evaluación de la concentración de mercurio en diversas marcas de atún enlatado comercializadas en la ciudad de Cartagena de India. Trabajo de grado presentado como requisito parcial para optar al título de: Magíster en Toxicología. Grupo de Química Ambiental y Computacional de la Universidad de Cartagena. Universidad Nacional de Colombia. Facultad de Medicina Departamento de Toxicología. Cartagena. 72 p.

  • Sandoval Y (2006) Determinación de alteraciones neuro-comportamentales en personas adultas expuestas crónicamente a Mercurio en la población de Segovia, Antioquia, 2005. Bogotá D.C. Universidad Nacional de Colombia. En: Casas, I., E. Gómez, L. Rodríguez, S. Girón & J. Mateus. 2015. Hacia un plan nacional para el control de los efectos del Mercurio en la salud en Colombia. Biomédica. 35: 30-37.

  • Sánquiz M, Rivas Z, Ávila H (1999) Concentración de metales pesados en peces de ríos de la zona sur del lago de Maracaibo. Act Cientif Venez 50(2):84

    Google Scholar 

  • Santos IR, Silva-Filho EV, Schaefer CEGR, Albuquerque-Filho MR, Campos LS (2005) Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, king George Island. Mar Pollut Bull 50(2):185-194

    CAS  Google Scholar 

  • Siboni N, Fine M, Bresler V, Loya Y (2004) Coastal coal pollution increases Cd concentrations in the predatory gastropod Hexaplex trunculus and is detrimental to its health. Mar Pollut Bull 49:111-118

    CAS  Google Scholar 

  • Sin S, Chua H, Lo W, Ng L (2001) Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environ Int 26(5):297-301

    CAS  Google Scholar 

  • Soria M, Sanz P, Martínez D, López-Artíquez M, Garrido R, Grillo A, Repetto M (1992) Total mercury and methylmercury in hait, maternal and umbilical blood, and placenta from women in the Seville area. Bull Environ Contam Toxicol 48(4):494-501

    CAS  Google Scholar 

  • Stoker P, Larsen J, Booth G, Lee M (1984) Pathology of gill and liver tissues from two genera of fishes exposed to two coal-derived materials. J Fish Biol 27:31-46

    Google Scholar 

  • Strand J, Vaughan B (1981) Ecological fate and effects of solvent refined coal (SRC) materials: a status report. Battelle.Virginia. 227 p.

  • Tang D, Li T, Liu J, Zhou Z, Yuan T, Chen Y, Rauh V, Xie J, Perera F (2008) Effects of prenatal exposure to coal-burning pollutants on children’s development in China. Environ Health Perspect 116(5):674-679

    Google Scholar 

  • Tarras-Wahlberg N, Flachier A, Lane S, Sangfors O (2001) Environmental impacts and metal exposure of aquatic ecosystems in rivers contaminated by small scale gold mining: the Puyango River basin, southern Ecuador. Sci Total Environ 278:239-261

    CAS  Google Scholar 

  • Taylor C, Golding J, Emond A (2016) Blood mercury levels and fish consumption pregnancy: risk and benefits for birth outcomes in a prospective observational birth cohort. Int J Hydrogen Energ:24

  • Torres J (2015) Nuevos desiertos avanzan detrás de la fiebre del oro (17 de diciembre, 2015). El Tiempo. 2-3 p.

  • Trasande L, Cortes J, Landrigan P, Abercrombie M, Bopp R, Cifuentes E (2010) Methylmercury exposure in a subsistence fishing community in Lake Chapala, México: an ecological approach. Environ Health 9:1-10

    Google Scholar 

  • Trujillo F, Lasso CA, Díaz-Granados MC, Farina O, Pérez LE, Barbarino A, González M, Usma JS (2010) Evaluación de la contaminación por mercurio en peces de interés comercial y de la concentración de organoclorados y organofosforados en el agua y sedimentos de la Orinoquía. Fundación Omacha:175-191

  • Türkmen A, Türkmen M, Tepe Y, Akyurt I (2005) Heavy metals in three commercially valuable fish species from Iskenderun Bay, Northern East Mediterranean Sea, Turkey. Food Chem 91:167-172

    Google Scholar 

  • Tüzen M (2003) Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chem 80:119-123

    Google Scholar 

  • Uba S, Uzairu A, Okunola O (2009) Content of heavy metals in Lumbricus terrestris and associated soils in dump sites. Int J Environ Res 3(3):353-358

    CAS  Google Scholar 

  • UNEP - United Nations Environment Programme (2013) Global mercury assessment: sources, emissions, releases and environmental transport. UNEP Chemicals Branch, Geneva

    Google Scholar 

  • UNEP/WHO (2008) Guidance for Identifying Populations at Risk from Mercury Exposure. http://www.who.int/foodsafety/publications/chem/mercuryexposure.pdf [accessed 30 Nov 2018].

  • Unuvar E, Ahmadov H, Kiziler A, Aydemir B, Toprak S, Ulker V, Ark C (2007) Mercury levels in cord blood and meconium of healthy newborns and venous blood of their mothers: clinical prospective cohort study. Sci Total Environ 374(1):60-70

    CAS  Google Scholar 

  • UPME (2014a) Indicadores de la minería en Colombia. Unidad de Planeación Minero Energética. Ministerio de Minas y Energía; Bogotá D. C. 127p.

  • UPME (2014b) Sistema de Información Minero Colombiano - SIMCO. Retrieved from, http://www.simco.gov.co [Accessed Nov 2018].

  • Vahter M, Akesson A, Lind B, Bjors U, Schutz A, Berglund M (2000) Longitudinal study of methylmercury and inorganic mercury in blood and urine of pregnant and lactating women, as well as in umbilical cord blood. Environ Res 84(2):186-194

    CAS  Google Scholar 

  • Vallejo Toro PP, Vásquez Bedoya LF, Correa ID, Bernal Franco GR, Alcántara-Carrió J, Palacio Baena JA (2016) Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: spatial distribution of trace metals in the Gulf of Urabá, Colombia. Mar Pollut Bull 111:311-320. https://doi.org/10.1016/j.marpolbul.2016.06.093

    Article  CAS  Google Scholar 

  • Veiga M (2010) Antioquia, Colombia: the world’s most polluted place by mercury: impressions from two field trips.

  • Vergara E, Rodríguez P (2015) Presencia de mercurio, Plomo y cobre en tejidos de Orechromis niloticus: sector de la cuenca alta del río Chicamocha, vereda Volcán, Paipa, Colombia. Producción más limpia. 10(2): 114-126.

  • Vinodhini R, Narayanan M (2008) Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (Common carp). J Environ Sci Technol 5(2):179-182

    CAS  Google Scholar 

  • Voegborlo R, Akagi H (2007) Determination of mercury in fish by cold vapour atomic absortion spectrometry using an automatic mercury analyzer. Food Chem 100:853-858

    CAS  Google Scholar 

  • Voegborlo R, Matsuyama A, Adimado A, Akagi H (2010) Head hair total mercury and methylmercury levels in some Ghanaian individuals for the estimation of their exposure to mercury: preliminary studies. B Environ ContamTox 84:34-38

    CAS  Google Scholar 

  • Vose F, Nelson W (1998) An assessment of the use of stabilized coal and oil ash for construction of artificial fishing reef: comparison of fishes observed on small ash and concrete reefs. Mar PollutBoll 36(12):980-988

    CAS  Google Scholar 

  • Wagner N, Tlotleng M (2012) Distribution of selected trace elements in density fractionated Waterberg coals from South Africa. Int J Coal Geol 94:225-237

    CAS  Google Scholar 

  • Wang X, Sato T, Xing B, Tao S (2005) Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. SciTotal Environt 350:28-37

    CAS  Google Scholar 

  • Williams R, Harcup M (1974) The fish populations of an industrial river in South Wales. J Fish Biol 6:395-414

    Google Scholar 

  • Woodhead P, Parker J, Duedall I (1982) The coal-waste artificial reef project (C-WARP): a new resource potential for fishing reef construction. Mar Fish Rev 44:16-23

    Google Scholar 

  • World Bank, International Finance Corporation (2002) Treasure or trouble? Mining in developing countries.

  • Yaginuma K, Murata K, Iwai M, Nakai K, Kurokawa N, Tatsuta N, Satoh H (2012) Hair to blood ratio and biological half-life of mercury: experimental study of methylmercury exposure through fish consumption in humans. J Toxicol Sci 31:25-32

    Google Scholar 

  • Yildirim Y, Gonulalan Z, Narin I, Soylak M (2008) Evaluation of trace heavy metal levels of some fish species sold at retail in Kyseri, Turkey. Environ Monit Assess 149:223-228

    Google Scholar 

  • Yousefi N, Meserghani M, Bahrami H, Amir M (2016) Assessment of Human health risk for heavy metals in imported rice ad its daily intake in Iran. Res J Environ Toxicol 10:75-81

    CAS  Google Scholar 

  • Yujun Y, Yang Z, Zhang S (2011) Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut 159:2575-2585

    Google Scholar 

  • Zhao Q, Wang Y, Cao Y, Chen A, Ren M, Ge Y, Yu Z, Wan S, Bo AHQ, Ruan L, Chen H, Qin S, Chen W, Hu C, Tao F, Xu D, Xu J, Wen L, Li L (2014) Potential health risk of heavy metals in cultivated topsoil and grain, including correlations with human primary liver, lung and gastric cancer, in Anhui Province, Eastern China. Sci Total Environ 470:340-347

    Google Scholar 

  • Zocche J, Dimer D, Paganini A, Carvalho D, Ávila R, Iochims dos Santos C, Appel L, Ferraz J, Moraes de Andrade V (2010) Heavy metals and DNA damage in blood cells of insectivore bats in coal mining areas of Catarinense coal basin, Brazil. Environ Res 110:684-691

    CAS  Google Scholar 

  • Zocche J, Paganini A, Hainzenreder G, Ávila R, Bernardo P, Iochims dos Santos C, Debastiani R, Ferraz J, Moraes de Andrade V (2013) Assessment of heavy metal content and DNA demage in Hypsiboas faber (anuran amphibian) in coal open-casting mine. Environ Toxicol Pharmacol 36:194-201

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Jorge Tadeo Lozano University of Bogotá through the Department of Biological and Environmental Sciences. The authors acknowledge the support of Professor Miguel Angel Rodríguez A. and environmental biology fellows María Casallas Roa, Laura Alejandra Hernández C., María Camila Morales P., and Laura Carolina Prasca R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Augusto Ruiz Agudelo.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paula Gutiérrez, B.F., Agudelo, C.A.R. Fish as bioindicators: coal and mercury pollution in Colombia’s ecosystems. Environ Sci Pollut Res 27, 27541–27562 (2020). https://doi.org/10.1007/s11356-020-09159-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09159-4

Keywords

Navigation