Skip to main content
Log in

A novel horizontal subsurface flow constructed wetland planted with Typha angustifolia for treatment of polluted water

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Rapid population growth and urbanization has put a lot of stress on existing water bodies in most developing countries such as the Marriott Lake of Egypt. Three constructed wetland configurations including Typha angustifolia planted with enhanced atmospheric aeration by using perforated pipes networks (CWA), planted without perforated pipe network (CWR), and a control non-planted and without perforated pipes wetland (Control) were used in the study. Changes in physicochemical properties and microbial community over four seasons and hydraulic loading rate (HLR) (50, 100, 200, 300, and 400 L day−1 m−1) were monitored using influent from Marriott Lake in Egypt. Overall, the removal performance followed the sequence CWA>CWR>control. Turbidity removal of 98.4%; biochemical oxygen demand (BOD5) removal of 83.3%; chemical oxygen demand (COD) removal of 95.8%; NH3-N removal of 99.9%; total nitrogen (TN) removal of 94.7%; NO3-N and NO2-N increased; total P (TP) removal of 99.7%, Vibrio sp. of 100%, Escherichia coli 100%; total bacterial count of 92.3%; and anaerobic bacteria reduction of 97.5% were achieved by using CWA. Seasonal variation and variation in HLRs had significant effect on performance. The modified planted CWA system enhances the removal of pollutants and could present a novel route for reducing the cost associated with integrating artificial aeration into wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

C:

Control unit (non-planted and without perforated pipes)

CWA:

Wetland unit (with perforated pipe network)

CWR:

Wetland unit (without perforated pipes)

HSFCW:

Horizontal subsurface flow constructed wetland

HLR:

Hydraulic loading rate

References

  • Albaldawi IAW, Abdullah SRS, Suja F, Anuar N, Idris M (2015) Phytoremediation of contaminated ground water using Typha angustifolia. Wat Practice & Tech 10(3):616–624. https://doi.org/10.2166/wpt.2015.072

  • Alufasi R, Gere J, Chakauya E, Lebea P, Parawira W, Chingwaru W (2017) Mechanisms of pathogen removal by macrophytes in constructed wetlands. Environ Technol Reviews 6(1):135–144. https://doi.org/10.1080/21622515.2017.1325940

  • Amiza MA, Zakiah J, Khim L, L. K. (2006) Fermentation of tempoyak using isolated tempoyak culture. Res J Microbiol 1(3):243–242

  • Angassa K, Leta S, Mulat, W(2018) Organic matter and nutrient removal performance of horizontal subsurface flow constructed wetlands planted with Phragmite karka and Vetiveria zizanioide for treating municipal wastewater. Environ Process (5):115–130. https://doi.org/10.1007/s40710-017-0276-1

  • APHA (American Public Health Association) (2012) Standard methods for the examination of water and wastewater. Washington DC, USA

  • Benhadj M, Gacemi-kirane D, Menasria T, Guebla K, Ahmane Z (2018) Screening of rare actinomycetes isolated from natural wetland ecosystem. J King Saud Uni - Sci 1018–3647. https://doi.org/10.1016/j.jksus.2018.03.008

  • Brix H (1990) Gas exchange through the soil-atmosphere interphase and through dead culms of Phragmites australis in a constructed reed bed receiving domestic sewage. Water Res 24(2):259–266

    Article  CAS  Google Scholar 

  • Chung AKC, Wu Y, Tam NFY, Wong MH (2007) Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating municipal wastewater. Ecol Eng 2(2000):81–89. https://doi.org/10.1016/j.ecoleng.2007.09.007

    Article  Google Scholar 

  • Gaballah MS, Ismail K, Beltagy A (2017). Treatment of polluted lake water. LAP LAMBERT Academic Publishing, Book (ISBN-13 978–3–659-86786-6), 0–144

  • Gaballah MS, Ismail K, Beltagy A, Zein Eldin AM, Ismail MM (2019) Wastewater treatment potential of water lettuce (Pistia stratiotes) with modified engineering design. J Water Chem Technol 41(3):197–205. https://doi.org/10.3103/s1063455x1903010x

    Article  Google Scholar 

  • Gwaski A, Ibrahim RH, Bukar AM, Gwaski PA, Ibrahim RH, Bukar AM (2017) Modeling parameters of oxygen demand in the aquatic environment of Lake Chad for depletion estimation. Greener J Chem Sci Technol 2(1):0–5. https://doi.org/10.15580/GJCST.2017.1.111517166 the

  • Hou J, Wang X, Wang J, Xia L, Zhang Y, Li D, Ma X (2018) Pathway governing nitrogen removal in artificially aerated constructed wetlands: Impact of aeration mode and influent chemical oxygen demand to nitrogen ratios. Bioresour Technol 257:137–146. https://doi.org/10.1016/j.biortech.2018.02.042

  • ISO, N. 9308/ (2012) International Standard Escherichia coli and coliform bacteria—2012

  • Jizheng P, Houhu Z, Xuejun L, Yong L, Min Z, Hongling X (2019) Enhanced nitrogen removal by the integrated constructed wetlands with artificial aeration. Environ Technol Innov 14:100362. https://doi.org/10.1016/j.eti.2019.100362

    Article  Google Scholar 

  • Kabenge I (2018) Performance of a constructed wetland as an upstream intervention for stormwater runoff quality management. Environ Sci Pollut Res 25(36):36765–36774

    Article  CAS  Google Scholar 

  • Kabenge I, Ouma G, Aboagye D, Banadda N (2018) Performance of a constructed wetland as an upstream intervention for stormwater runoff quality management. Environ Sci Pollut Res 25(36):36765–36774

  • Kadlec RH, Wallace SD (2009) Treatment wetlands, second edition. In Treatment Wetlands, Second edn https://doi.org/10.1201/9781420012514

  • Kantawanichkul S, Pingkul K, Araki H (2008) Nitrogen removal by a combined subsurface vertical down-flow and up-flow constructed wetland system. In: Vymazal J. (eds) Treat Plant Dyn Manag Constr Nat Wetlands 1:161–170. https://doi.org/10.1007/978-1-4020-8235-1_14

  • Kipasika HJ, Buza J, Smith WA, Njau KN (2016) Removal capacity of faecal pathogens from wastewater by four wetland vegetation: Typha latifolia, Cyperus papyrus, Cyperus alternifolius and Phragmites australis. Afr J Microbiol Res 10(19):654–661. https://doi.org/10.5897/ajmr2016.7931

    Article  CAS  Google Scholar 

  • Kobayashi T, Enomoto S, Sakazaki R, Kuwahara S (1963) A new selective isolation medium for the Vibrio group; on a modified Nakanishi’S medium (Tcbs agar medium). Nippon Saikingaku Zasshi. Nihon Saikingaku Zasshi 18:387–392. https://doi.org/10.3412/jsb.18.387

    Article  CAS  Google Scholar 

  • Kotti I, Gikas GD, Tsihrintzis VA (2010) Effect of operational and design parameters on removal efficiency of pilot-scale FWS constructed wetlands and comparison with HSF systems. Ecol Eng 36(7):862–875. https://doi.org/10.1016/j.ecoleng.2010.03.002

    Article  Google Scholar 

  • Lananan F, Abdul Hamid SH, Din WNS, Ali N, Khatoon H, Jusoh A, Endut A (2014) Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing Effective Microorganism (EM-1) and microalgae (Chlorella sp.). Int Biodeterior Biodegrad 95:127–134. https://doi.org/10.1016/j.ibiod.2014.06.013

  • Leto C, Tuttolomondo T, La Bella S, Leone R, Leto C, Tuttolomondo T et al (2013a) Growth of Arundo donax L. and Cyperus alternifolius L. in a horizontal subsurface flow constructed wetland using pre-treated urban wastewater—a case study in Sicily ( Italy). Desalin Water Treat 1(13):37–41. https://doi.org/10.1080/19443994.2013.792134

    Article  CAS  Google Scholar 

  • Leto C, Tuttolomondo T, La Bella S, Leone R, Licata M (2013b) Growth of Arundo donax L. and Cyperus alternifolius L. in a horizontal subsurface flow constructed wetland using pre-treated urban wastewater-a case study in Sicily (Italy). Desalin Water Treat 51(40–42):7447–7459. https://doi.org/10.1080/19443994.2013.792134

    Article  CAS  Google Scholar 

  • Li L, Li Y, Biswas DK, Nian Y, Jiang G (2008) Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China. Bioresour Technol 99(6):1656–1663. https://doi.org/10.1016/j.biortech.2007.04.001

    Article  CAS  Google Scholar 

  • Li F, Lu L, Zheng X, Hao H, Liang S, Guo W, Zhang X (2014) Bioresource technology enhanced nitrogen removal in constructed wetlands: effects of dissolved oxygen and step-feeding. Bioresour Technol 169:395–402. https://doi.org/10.1016/j.biortech.2014.07.004

    Article  CAS  Google Scholar 

  • Li YC, Zhang DQ, Wang M (2017) Performance evaluation of a full-scale constructed wetland for treating stormwater runoff. Clean soil air water 45(11). https://doi.org/10.1002/clen.201600740

  • Liu R, Zhao Y, Doherty L, Hu Y, Hao X (2015) A review of incorporation of constructed wetland with other treatment processes. Chem Eng J 279:220–230. https://doi.org/10.1016/j.cej.2015.05.023

    Article  CAS  Google Scholar 

  • Liu H, Hu Z, Zhang J, Hao H, Guo W, Liang S, Wu H (2016) Optimizations on supply and distribution of dissolved oxygen in constructed wetlands: a review. Bioresour Technol 214:797–805. https://doi.org/10.1016/j.biortech.2016.05.003

    Article  CAS  Google Scholar 

  • Liu F f, Fan J, Du J, Shi X, Zhang J, Shen Y (2019) Intensified nitrogen transformation in intermittently aerated constructed wetlands: removal pathways and microbial response mechanism. Sci Total Environ 650:2880–2887. https://doi.org/10.1016/j.scitotenv.2018.10.037

    Article  CAS  Google Scholar 

  • Newman JM, Clausen JC, Neafsey JA (1999) Seasonal performance of a wetland constructed to process dairy milkhouse wastewater in Connecticut. Ecol Eng 14(1–2):181–198. https://doi.org/10.1016/S0925-8574(99)00028-2

  • Marzo A, Ventura D, Cirelli GL, Aiello R, Vanella D, Rapisarda R, Consoli S (2018) Hydraulic reliability of a horizontal wetland for wastewater treatment in Sicily. Sci Total Environ 636(September):94–106. https://doi.org/10.1016/j.scitotenv.2018.04.228

    Article  CAS  Google Scholar 

  • Mburu N, Rousseau D, van Bruggen J, Thumbi G, Llorens E, García J, Lens P (2013) Reactive transport simulation in a tropical horizontal subsurface flow constructed wetland treating domestic wastewater. Sci Total Environ 449:309–319

    Article  CAS  Google Scholar 

  • Mishra S, Maiti A (2017) The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-8357-7

  • Ong S, Uchiyama K, Inadama D, Ishida Y, Yamagiwa K (2010) Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants. Bioresour Technol 101(19):7239–7244. https://doi.org/10.1016/j.biortech.2010.04.032

    Article  CAS  Google Scholar 

  • Rous V, Vymazal J, Hnátková T (2019) Treatment wetlands aeration efficiency: a review. Ecol Eng 136(July 2018):62–67. https://doi.org/10.1016/j.ecoleng.2019.06.006

    Article  Google Scholar 

  • Sani A (2015) Treatment performance assessments of different wetland mesocosms. (June). Retrieved from http://usir.salford.ac.uk/id/eprint/36909/1/FinalDissertation.pdf. Acessed 10 June 2019

  • Shingare RP, Nanekar SV, Thawale PR, Karthik R, Juwarkar AA (2017) Comparative study on removal of enteric pathogens from domestic wastewater using Typha latifolia and Cyperus rotundus along with different substrates. Int J Phytoremediation 19(10):899–908. https://doi.org/10.1080/15226514.2017.1303809

    Article  CAS  Google Scholar 

  • Shingare RP, Thawale PR, Raghunathan K, Mishra A, Kumar S (2019) Constructed wetland for wastewater reuse: Role and efficiency in removing enteric pathogens. J Environ Manag 246:444–461. https://doi.org/10.1016/j.jenvman.2019.05

  • Sricoth T, Meeinkuirt W, Pichtel J, Taeprayoon P, Saengwilai P (2018) Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel. Environ Sci Pollut Res 25(6):5344–5358. https://doi.org/10.1007/s11356-017-0813-5

    Article  CAS  Google Scholar 

  • Sukumaran D (2013) Phytoremediation of heavy metals from industrial effluent using constructed wetland technology. Applied Ecol Environ Sci 1(5):92–97. https://doi.org/10.12691/aees-1-5-4

  • Tanner CC, Kadlec RH (2003) Oxygen flux implications of observed nitrogen removal rates in subsurface-flow treatment wetlands. Water Sci Technol 48(5):191–198

    Article  CAS  Google Scholar 

  • Valipour A, Raman VK, Ahn Y (2015) Effectiveness of domestic wastewater treatment using a bio-hedge water hyacinth wetland system. (January). https://doi.org/10.3390/w7010329

  • Vymazal J (2018) Does clogging affect long-term removal of organics and suspended solids in gravel-based horizontal subsurface flow constructed wetlands ? Chem Eng J 331(July 2017):663–674. https://doi.org/10.1016/j.cej.2017.09.048

    Article  CAS  Google Scholar 

  • Wallace SD (2009) Kadlec treatment wetlands 2nd edn p 1–366

  • Yang X, Shi W, Li W, Wan L, Yan X, Wang J, Yu S (2011) Constructed wetland series process for pretreatment raw water of drinking water treatment plant. Advanced Materials Res 185:625–629. https://doi.org/10.4028/www.scientific.net/AMR.183-185.625

  • Zhang BY, Zheng JS, Sharp RG (2010a) Phytoremediation in engineered wetlands: mechanisms and applications. Procedia Environ Sci 2:1315–1325. https://doi.org/10.1016/j.proenv.2010.10.142

    Article  Google Scholar 

  • Zhang L, Zhang L, Liu Y, Shen Y, Liu H, Xiong Y (2010b) Effect of limited artificial aeration on constructed wetland treatment of domestic wastewater. DES 250(3):915–920. https://doi.org/10.1016/j.desal.2008.04.062

    Article  CAS  Google Scholar 

  • Zhang D, Tan SK, Jern NW, Lanka S, Lanka S (2016) Performance of tropical vertical subsurface flow constructed wetlands at different hydraulic loading rates. Clean soil air water 44(9999):1–11. https://doi.org/10.1002/clen.201500101

  • Zobell CE (1946) Marine microbiology. A monogram on hydrobacteriology. Chronica Botanica Co., Waltham, p 240

    Google Scholar 

Download references

Funding

This work was supported by the National Institute of Oceanography and Fisheries, Environmental Division, Alexandria, Egypt (Enviro 2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ola Abdelwahab.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaballah, M.S., Abdelwahab, O., Barakat, K.M. et al. A novel horizontal subsurface flow constructed wetland planted with Typha angustifolia for treatment of polluted water. Environ Sci Pollut Res 27, 28449–28462 (2020). https://doi.org/10.1007/s11356-020-08669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08669-5

Keywords

Navigation