Skip to main content

Advertisement

Log in

Enhanced adsorption of antimonate by ball-milled microscale zero valent iron/pyrite composite: adsorption properties and mechanism insight

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

This article has been updated

Abstract

Ball-milling is considered as an economical and simple technology to produce novel engineered materials. The ball-milled microscale zero valent iron/pyrite composite (BM-ZVI/FeS2) had been synthesized through ball-milling technology and applied for highly efficient sequestration of antimonate (Sb(V)) in aqueous solution. BM-ZVI/FeS2 exhibited good Sb(V) removal efficiency (≥ 99.18%) at initial concentration less than 100 mg Sb(V)/L. Compared to ball-milled zero valent iron (ZVI) and pyrite (FeS2), BM-ZVI/FeS2 exhibited extremely higher removal efficiency due to the good synergistic adsorption effect. BM-ZVI/FeS2 showed efficient removal performance at broad pH (2.6–10.6). Moreover, the coexisting anions had negligible inhibition influence on the Sb(V) removal. The antimony mine wastewater can be efficiently remediated by BM-ZVI/FeS2, and the residual Sb(V) concentrations (< 0.96 μg/L) can meet the mandatory discharge limit in drinking water (5 μg Sb/L). Experimental and model results demonstrated that endothermic reaction and chemisorption were involved in Sb(V) removal by BM-ZVI/FeS2. The XRD and XPS analyses confirmed that the complete corrosion of ZVI occurred on BM-ZVI/FeS2 after Sb(V) adsorption, resulting in the enhanced Sb(V) sequestration. Mechanism analyses showed that the excellent removal performance of BM-ZVI/FeS2 was ascribed to the high coverage of iron (hydr)oxide oxidized from ZVI. Because of the advantages of economical cost, high Sb(V) removal capacity and easy availability, BM-ZVI/FeS2 offers a promising adsorbent for Sb(V) remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 11 April 2024

    Editor's Note: Readers are alerted that the concerns have been raised with this article. Editorial action will be taken as appropriate once this matter is resolved and all parties have been given an opportunity to respond in full.

  • 03 May 2024

    Editor's Note: Readers are notified that the concerns have been investigated and no action is being taken at this time.

References

  • Borah D, Senapati K (2006) Adsorption of Cd(II) from aqueous solution onto pyrite. Fuel 85:1929–1934

    Article  CAS  Google Scholar 

  • Bulut G, Yenial Ü, Emiroğlu E, Sirkeci AA (2014) Arsenic removal from aqueous solution using pyrite. J Clean Prod 84:526–532

    Article  CAS  Google Scholar 

  • Chai L, Mubarak H, Yang Z, Yong W, Tang C, Mirza N (2016) Growth, photosynthesis, and defense mechanism of antimony (Sb)-contaminated Boehmeria nivea L. Environ Sci Pollut R 23:7470–7481

    Article  CAS  Google Scholar 

  • Chai L, Li H, Yang Z, Min X, Liao Q, Liu Y, Men S, Yan Y, Xu J (2017) Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: distribution, contamination, and ecological risk assessment. Envrion Sci Pollut R 24:874–885

    Article  CAS  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125

    Article  Google Scholar 

  • Cwiertny DM, Bransfield SJ, Roberts AL (2007) Influence of the oxidizing species on the reactivity of Iron-based bimetallic reductants. Environ Sci Technol 41:3734–3740

    Article  CAS  Google Scholar 

  • Dong S, Dou X, Mohan D, Pittman CU, Luo J (2015) Synthesis of graphene oxide/schwertmannite nanocomposites and their application in Sb(V) adsorption from water. Chem Eng J 270:205–214

    Article  CAS  Google Scholar 

  • Duan Y, Han DS, Batchelor B, Abdel-Wahab A (2016) Synthesis, characterization, and application of pyrite for removal of mercury. Colloids Surfaces A 490:326–335

    Article  CAS  Google Scholar 

  • Fei J, Min X, Wang Z, Pang Z, Liang Y, Ke Y (2017) Health and ecological risk assessment of heavy metals pollution in an antimony mining region: a case study from South China. Environ Sci Pollut R 24:27573–27586

    Article  CAS  Google Scholar 

  • Fei J, Wang T, Zhou Y, Wang Z, Min X, Ke Y, Hu W, Chai L (2018) Aromatic organoarsenic compounds (AOCs) occurrence and remediation methods. Chemosphere 207:665–675

    Article  CAS  Google Scholar 

  • Filella M, Belzile N, Chen Y (2002) Antimony in the environment: a review focused on natural waters: II. Relevant solution chemistry. Earth Sci Rev 59:265–285

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  • Gao J, Wang W, Rondinone AJ, He F, Liang L (2015) Degradation of Trichloroethene with a novel ball milled Fe–C Nanocomposite. J Hazard Mater 300:443–450

    Article  CAS  Google Scholar 

  • Gu Y, Wang B, He F, Bradley MJ, Tratnyek PG (2017) Mechanochemically sulfidated microscale zero valent iron: pathways, kinetics, mechanism, and efficiency of trichloroethylene dechlorination. Environ Sci Technol 51:12653–12662

    Article  CAS  Google Scholar 

  • Guan X, Sun Y, Qin H, Li J, Lo IMC, He D, Dong H (2015) The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Res 75:224–248

    Article  CAS  Google Scholar 

  • Guo X, Wu Z, He M (2009) Removal of antimony(V) and antimony(III) from drinking water by coagulation–flocculation–sedimentation (CFS). Water Res 43:4327–4335

    Article  CAS  Google Scholar 

  • Guo X, Wu Z, He M, Meng X, Jin X, Qiu N, Zhang J (2014) Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure. J Hazard Mater 276:339–345

    Article  CAS  Google Scholar 

  • Han DS, Song JK, Batchelor B, Abdel-Wahab A (2013) Removal of arsenite(As(III)) and arsenate(As(V)) by synthetic pyrite (FeS2): synthesis, effect of contact time, and sorption/desorption envelopes. J Colloid Interface Sci 392:311–318

    Article  CAS  Google Scholar 

  • He M, Wang X, Wu F, Fu Z (2012) Antimony pollution in China. Sci Total Environ 421–422:41–50

    Article  Google Scholar 

  • He X, Min X, Luo X (2017) Efficient removal of antimony (III, V) from contaminated water by amino modification of a zirconium metal–organic framework with mechanism study. J Chem Eng Data 62:1519–1529

    Article  CAS  Google Scholar 

  • He X, Deng F, Shen T, Yang L, Chen D, Luo J, Luo X, Min X, Wang F (2019a) Exceptional adsorption of arsenic by zirconium metal-organic frameworks: engineering exploration and mechanism insight. J Colloid Interface Sci 539:223–234

    Article  CAS  Google Scholar 

  • He X, Min X, Peng T, Ke Y, Zhao F, Wang Y, Sillanpää M (2019b) Highly efficient antimonate removal from water by pyrite/hematite bi-mineral: performance and mechanism studies. J Chem Eng Data 64:5910–5919

    Article  CAS  Google Scholar 

  • Ke Y, Peng N, Xue K, Min X, Chai L, Pan Q, Liang Y, Xiao R, Wang Y, Tang C, Liu H (2018) Sulfidation behavior and mechanism of zinc silicate roasted with pyrite. Appl Surf Sci 435:1011–1019

    Article  CAS  Google Scholar 

  • Kumar N, Chaurand P, Rose J, Diels L, Bastiaens L (2015) Synergistic effects of sulfate reducing bacteria and zero valent iron on zinc removal and stability in aquifer sediment. Chem Eng J 260:83–89

    Article  CAS  Google Scholar 

  • Leng Y, Guo W, Su S, Yi C, Xing L (2012) Removal of antimony(III) from aqueous solution by graphene as an adsorbent. Chem Eng J 211–212:406–411

    Article  Google Scholar 

  • Leuz A, Hug SJ, Wehrli B, Johnson CA (2006) Iron-mediated oxidation of antimony(III) by oxygen and hydrogen peroxide compared to arsenic(III) oxidation. Environ Sci Technol 40:2565–2571

    Article  CAS  Google Scholar 

  • Li X, Dou X, Li J (2012) Antimony(V) removal from water by iron-zirconium bimetal oxide: performance and mechanism. J Environ Sci China 24:1197–1203

    Article  CAS  Google Scholar 

  • Li J, Wang Q, Zhang S, Qin D, Wang G (2013) Phylogenetic and genome analyses of antimony-oxidizing bacteria isolated from antimony mined soil. Int Biodeterior Biodegradation 76:76–80

    Article  CAS  Google Scholar 

  • Li Y, Min X, Chai L, Shi M, Tang C, Wang Q, Liang Y, Lei J, Liyang W (2016) Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals. J Environ Manag 181:756–761

    Article  CAS  Google Scholar 

  • Li T, Song F, Zhang J, Tian S, Huang N, Xing B, Bai Y (2019) Experimental and modeling study of proton and copper binding properties onto fulvic acid fractions using spectroscopic techniques combined with two-dimensional correlation analysis. Environ Pollut:113465. https://doi.org/10.1016/j.envpol.2019.113465

  • Li T, Song F, Zhang J, Liu S, Xing B, Bai Y (2020) Pyrolysis characteristics of soil humic substances using TG-FTIR-MS combined with kinetic models. Sci Total Environ 698:134237

    Article  CAS  Google Scholar 

  • Liang L, Sun W, Guan X, Huang Y, Choi W, Bao H, Li L, Jiang Z (2014) Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron. Water Res 49:371–380

    Article  CAS  Google Scholar 

  • Ling L, Pan B, Zhang W (2015) Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se(IV). Water Res 71:274–281

    Article  CAS  Google Scholar 

  • Liu D, Min X, Ke Y, Chai L, Liang Y, Li Y, Yao L, Wang Z (2018) Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Envrion Sci Pollut R 25:7600–7607

    Article  CAS  Google Scholar 

  • Luo J, Crittenden JC (2019) Nanomaterial adsorbent design: from bench scale tests to engineering design. Environ Sci Technol 53:10537

    Article  CAS  Google Scholar 

  • Luo X, Wang C, Wang L, Deng F, Luo S, Tu X, Au C (2013) Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and As(V) from water. Chem Eng J 220:98–106

    Article  CAS  Google Scholar 

  • Luo J, Luo X, Crittenden J, Qu J, Bai Y, Peng Y, Li J (2015) Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2). Environ Sci Technol 49:11115–11124

    Article  CAS  Google Scholar 

  • Miao Y, Han F, Pan B, Niu Y, Nie G, Lv L (2013) Antimony(V) removal from water by hydrated ferric oxides supported by calcite sand and polymeric anion exchanger. J Environ Sci-China 26:307–314

    Article  Google Scholar 

  • Min X, Li Y, Ke Y, Shi M, Chai L, Xue K (2017) Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal. Water Sci Technol 76:192–200

    Article  CAS  Google Scholar 

  • Mubarak H, Chai L, Mirza N, Yang Z, Pervez A, Tariq M, Shaheen S, Mahmood Q (2015) Antimony (Sb) – pollution and removal techniques – critical assessment of technologies. Toxicol Environ Chem 97:1296–1318

    Article  CAS  Google Scholar 

  • Noubactep C (2015) Metallic iron for environmental remediation: a review of reviews. Water Res 85:114–123

    Article  CAS  Google Scholar 

  • Puls RW, Paul CJ, Powell RM (1999) The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test. Appl Genochem 14:989–1000

    Article  CAS  Google Scholar 

  • Ray LF, Jiří Č, Jiří S, Daniel O, Silmarilly B, Eloise CK (2009) Raman spectroscopic study of the antimonate mineral brandholzite Mg [Sb2(OH)12]· 6H2O. J Raman Spectrosc 40:1907–1910

    Article  Google Scholar 

  • Salam MA, Mohamed RM (2013) Removal of antimony (III) by multi-walled carbon nanotubes from model solution and environmental samples. Chem Eng Res Des 91:1352–1360

    Article  CAS  Google Scholar 

  • Shao P, Ding L, Luo J, Luo Y, You D, Zhang Q, Luo X (2019) Lattice-defect-enhanced adsorption of arsenic on zirconia nanospheres: a combined experimental and theoretical study. ACS Appl Mater Interfaces 11:29736–29745

    Article  CAS  Google Scholar 

  • Shokes TE, Möller G (1999) Removal of dissolved heavy metals from acid rock drainage using Iron metal. Environ Sci Technol 33:282–287

    Article  CAS  Google Scholar 

  • Skeaff JM, Beaudoin R, Wang R, Joyce B (2013) Transformation/dissolution examination of antimony and antimony compounds with speciation of the transformation/dissolution solutions. Integr Environ Asses 9:98–113

    Article  CAS  Google Scholar 

  • Starling A, Gilligan JM, Carter AHC, Foster RP, Saunders RA (1989) High-temperature hydrothermal precipitation of precious metals on the surface of pyrite. Nature 340:298

    Article  CAS  Google Scholar 

  • Tepong-Tsindé R, Crane R, Noubactep C, Nassi A, Ruppert H (2015) Testing metallic iron filtration systems for decentralized water treatment at pilot scale. Water-Sui 7:868–897

    Google Scholar 

  • Vink BW (1996) Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams. Chem Geol 130:21–30

    Article  CAS  Google Scholar 

  • Wang T, Zhang L, Li C, Yang W, Song T, Tang C, Meng Y, Dai S, Wang H, Chai L, Luo J (2015) Synthesis of core–shell magnetic Fe3O4@poly(m-phenylenediamine) particles for chromium reduction and adsorption. Environ Sci Technol 49:5654–5662

    Article  CAS  Google Scholar 

  • Wilson SC, Lockwood PV, Ashley PM, Tighe M (2010) The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environ Pollut 158:1169–1181

    Article  CAS  Google Scholar 

  • Xie X, Min X, Chai L, Tang C, Liang Y, Li M, Ke Y, Chen J, Wang Y (2013) Quantitative evaluation of environmental risks of flotation tailings from hydrothermal sulfidation–flotation process. Environ Sci Pollut R 20:6050–6058

    Article  CAS  Google Scholar 

  • Xu Y, Ohki A, Shigeru M (2001) Adsorption and removal of antimony from aqueous solution by an activated alumina. Toxicol Environ Chem:133–144

  • Xu W, Wang H, Liu R, Zhao X, Qu J (2011) The mechanism of antimony(III) removal and its reactions on the surfaces of Fe–Mn binary oxide. J Colloid Interface Sci 363:320–326

    Article  CAS  Google Scholar 

  • Xu F, Deng S, Xu J, Zhang W, Wu M, Wang B, Huang J, Yu G (2012) Highly active and stable Ni–Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol. Environ Sci Technol 46:4576–4582

    Article  CAS  Google Scholar 

  • Xu C, Zhang B, Wang Y, Shao Q, Zhou W, Fan D, Bandstra JZ, Shi Z, Tratnyek PG (2016) Effects of sulfidation, magnetization, and oxygenation on azo dye reduction by zerovalent iron. Environ Sci Technol 50:11879–11887

    Article  CAS  Google Scholar 

  • Yadav AK, Kumar N, Sreekrishnan TR, Satya S, Bishnoi NR (2010) Removal of chromium and nickel from aqueous solution in constructed wetland: mass balance, adsorption–desorption and FTIR study. Chem Eng J 160:122–128

    Article  CAS  Google Scholar 

  • Yang Z, Liu L, Chai L, Liao Y, Yao W, Xiao R (2015) Arsenic immobilization in the contaminated soil using poorly crystalline Fe-oxyhydroxy sulfate. Environ Sci Pollut R 22:12624–12632

    Article  CAS  Google Scholar 

  • Yang Z, Wu Z, Liao Y, Liao Q, Yang W, Chai L (2017) Combination of microbial oxidation and biogenic schwertmannite immobilization: a potential remediation for highly arsenic-contaminated soil. Chemosphere 181:1–8

    Article  CAS  Google Scholar 

  • Yang L, Yi G, Hou Y, Cheng H, Luo X, Pavlostathis SG, Luo S, Wang A (2019) Building electrode with three-dimensional macroporous interface from biocompatible polypyrrole and conductive graphene nanosheets to achieve highly efficient microbial electrocatalysis. Biosens Bioelectron 141:111444

    Article  CAS  Google Scholar 

  • Yao L, Min X, Xu H, Ke Y, Liang Y, Yang K (2018) Hydrothermal treatment of arsenic sulfide residues from arsenic-bearing acid wastewater. Int J Env Res Pub He 15:1863

    Article  Google Scholar 

  • Yu H, Shao P, Fang L, Pei J, Ding L, Pavlostathis SG, Luo X (2019) Palladium ion-imprinted polymers with PHEMA polymer brushes: role of grafting polymerization degree in anti-interference. Chem Eng J 359:176–185

    Article  CAS  Google Scholar 

  • Zhao X, Dou X, Mohan D, Pittman CU, Ok YS, Jin X (2014) Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron. Chem Eng J 247:250–257

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge National Key R&D Program of China (2018YFC1900301, 2017YFC0210402), National Science Fund for Distinguished Young Scholars (51825403), the key project of National Natural Science Foundation of China (51634010), National Natural Science Foundation of China (51904354), and Key R&D Program of Hunan Province (2019SK2281).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Ke or Feiping Zhao.

Additional information

Responsible editor: Ioannis A. Katsoyiannis

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 730 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Min, X., Peng, T. et al. Enhanced adsorption of antimonate by ball-milled microscale zero valent iron/pyrite composite: adsorption properties and mechanism insight. Environ Sci Pollut Res 27, 16484–16495 (2020). https://doi.org/10.1007/s11356-020-08163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08163-y

Keywords

Navigation