Skip to main content
Log in

Research on NO and SO2 removal using TiO2-supported iron catalyst with vaporized H2O2 in a catalytic oxidation combined with absorption process

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Simultaneous removal of NOx and SO2 is carried out by an oxidation-absorption process, which NO oxidized by active hydroxyl radicals (·OH) derived from catalytic decomposition of vaporized H2O2 over Fe3O4/TiO2 and then adsorbed by NaOH solution along with SO2. Fe3O4/TiO2 synthesized by wet impregnation method with an additional reduction under H2 atmosphere was characterized by XRD, FTIR, BET, XPS, and VSM analysis. Effects of H2O2 concentration, H2O2 injection rate, reaction temperature, gas flow rate, and flue gas component on simultaneous removal were investigated. The experimental results show that NO can be effectively oxidized by highly reactive ·OH radicals generated from H2O2 decomposition over Fe3O4/TiO2 catalyst, and removal efficiencies of 93.31% for NO, 85.90% for NOx, and 100% for SO2 were obtained. The surface zero-valent iron (Fe0) and divalent iron (Fe2+) are the key factors of the catalytic oxidation with hydroxyl radical. H2O2 adsorption and dissociation mechanism on catalyst surface was studied using DFT calculation. The calculation results demonstrate that H2O2 prefers to dissociate on iron containing surface, and ·OH radicals generation follow by Haber-Weiss (H–W) mechanism. The stable oxidative product of HNO2 and HNO3 were generated through NO/NO2 and H2O2 co-adsorption on the FeO/TiO2 (0 0 1) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Brogren C, Karlsson HT, Bjerle I (1998) Absorption of NO in an aqueous solution of NaClO2. Chem Eng Technol 21:61–70

    CAS  Google Scholar 

  • Chen L, Li Y, Zhao Q, Wang Y, Liang Z, Lu Q (2017) Removal of NOx using hydrogen peroxide vapor over Fe/TiO2 catalysts and an absorption technique. Catalysts 7:386

    Google Scholar 

  • Chen L, Yang W, Wang Y, Liang Z, Zhao Q, Lu Q (2018a) Investigation on the NO removal from simulated flue gas by using H2O2 vapor over Fe2(MoO4)3. Energ Fuel 32:8605–8613

    CAS  Google Scholar 

  • Chen L, Xu Z, He C, Wang Y, Liang Z, Zhao Q, Lu Q (2018b) Gas-phase total oxidation of nitric oxide using hydrogen peroxide vapor over Pt/TiO2. Appl Surf Sci 457:821–830

    CAS  Google Scholar 

  • Costa RCC, Moura FCC, Ardisson JD, Fabris JD, Lago RM (2008) Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides. Appl Catal B 83:131–139

    CAS  Google Scholar 

  • Delley B (2000) DMol3 DFT studies: from molecules and molecular environments to surfaces and solids. Comput Mater Sci 17:122–126

    CAS  Google Scholar 

  • Diao F, Tian F, Liang W, Feng H, Wang Y (2016) Mechanistical investigation on the self-enhanced photocatalytic activity of CuO/Cu2O hybrid nanostructures by density functional theory calculations. Phys Chem Chem Phys

  • Ding J, Zhong Q, Zhang S, Song F, Bu Y (2014) Simultaneous removal of NOx and SO2 from coal-fired flue gas by catalytic oxidation-removal process with H2O2. Chem Eng J 243:176–182

    CAS  Google Scholar 

  • Duo Y, Wang X, He J, Zhang S, Pan H, Chen J, Chen J (2019) Simultaneous removal of SO2 and NO by FeII(EDTA) solution: promotion of Mn powder and mechanism of reduction. Environ Sci Pollut R 26:28808–28816

    CAS  Google Scholar 

  • Fang P, Cen C, Wang X, Tang Z, Tang Z, Chen D (2013) Simultaneous removal of SO2, NO and Hg0 by wet scrubbing using urea+KMnO4 solution. Fuel Process Technol 106:645–653

    CAS  Google Scholar 

  • Gogulancea V, Lavric V (2014) Flue gas cleaning by high energy electron beam – modeling and sensitivity analysis. Appl Therm Eng 70:1253–1261

    CAS  Google Scholar 

  • Habibi N (2014) Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM. Spectro Acta Part A 131:55–58

    CAS  Google Scholar 

  • Hao R, Zhao Y, Yuan B, Zhou S, Yang S (2016) Establishment of a novel advanced oxidation process for economical and effective removal of SO2 and NO. J Hazard Mater 318:224–232

    CAS  Google Scholar 

  • Hu Y, Tsai HL, Huang CL (2003) Phase transformation of precipitated TiO2 nanoparticles. Mater Sci Eng A 344:209–214

    Google Scholar 

  • Huang X, Xu C, Ma J, Chen F (2018) Ionothermal synthesis of Cu-doped Fe3O4 magnetic nanoparticles with enhanced peroxidase-like activity for organic wastewater treatment. Adv Powder Technol 29:796–803

    CAS  Google Scholar 

  • Hutson ND, Krzyzynska R, Srivastava RK (2008) Simultaneous removal of SO2, NOx, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber. Ind Eng Chem Res 47:5825–5831

    CAS  Google Scholar 

  • Jiang T, Xu K (1995) FTIR study of ultradispersed diamond powder synthesized by explosive detonation. Carbon 33:1663–1671

    CAS  Google Scholar 

  • Khalfaoui M, Knani S, Hachicha MA, Lamine AB (2003) New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment. J Colloid Interf Sci 263:350–356

    CAS  Google Scholar 

  • Laidler KJ (1984) The development of the Arrhenius equation. J Chem Educ 61:494

    CAS  Google Scholar 

  • Li C, Zhang A, Zhang L, Song J, Su S, Sun Z, Xiang J (2018) Enhanced photocatalytic activity and characterization of magnetic Ag/BiOI/ZnFe2O4 composites for Hg0 removal under fluorescent light irradiation. Appl Surf Sci 433:914–926

    CAS  Google Scholar 

  • Li T, Wang B, Li W, Nie J, Song Z, Yang W, Ma C, Sun L (2019) Effect of occurrence modes of nickel and vanadium on gasification characteristics of petroleum coke. Fuel 116686

  • Liu J, He M, Zheng C, Chang M (2011) Density functional theory study of mercury adsorption on V2O5 (001) surface with implications for oxidation. P Combust Inst 33:2771–2777

    CAS  Google Scholar 

  • Liu Y, Liu P, Su Z, Li F, Wen F (2008) Attapulgite–Fe3O4 magnetic nanoparticles via co-precipitation technique. Appl Surf Sci 255:2020–2025

    CAS  Google Scholar 

  • Liu Y, Zhang J, Sheng C, Zhang Y, Zhao L (2010) Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process. Chem Eng J 162:1006–1011

    CAS  Google Scholar 

  • Liu Y, Wang Q, Pan J (2016) Novel process of simultaneous removal of nitric oxide and sulfur dioxide using a vacuum ultraviolet (VUV)-activated O2/H2O/H2O2 system in a wet VUV–spraying reactor. Environ Sci Technol 50:12966–12975

    CAS  Google Scholar 

  • Liu Y, Wang Y (2017) Simultaneous removal of NO and SO2 using aqueous peroxymonosulfate with coactivation of Cu2+/Fe3+ and high temperature. AICHE J 63:1287–1302

    CAS  Google Scholar 

  • Liu Y, Wang Y, Liu Z, Wang Q (2017a) Oxidation removal of nitric oxide from flue gas using UV photolysis of aqueous hypochlorite. Environ Sci Technol 51:11950–11959

    CAS  Google Scholar 

  • Liu Y, Xu W, Zhao L, Wang Y, Zhang J (2017b) Absorption of NO and simultaneous absorption of SO2/NO using a vacuum ultraviolet light/ultrasound/KHSO5 system. Energ Fuel 31:12364–12375

    CAS  Google Scholar 

  • Liu Y, Wang Y, Yin Y, Pan J, Zhang J (2018a) Oxidation removal of nitric oxide from flue gas using an ultraviolet light and heat coactivated oxone system. Energ Fuel 32:1999–2008

    CAS  Google Scholar 

  • Liu Y, Wang Y, Wang Q, Pan J, Zhang J (2018b) Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS). Chemosphere 190:431–441

    CAS  Google Scholar 

  • Moura F, Oliveira G, Araujo M, Ardisson J, Macedo W, Lago R (2006) Highly reactive species formed by interface reaction between Fe0–iron oxides particles: an efficient electron transfer system for environmental applications. Appl Catal A 307:195–204

    CAS  Google Scholar 

  • Munoz M, Domínguez P, de Pedro ZM, Casas JA, Rodriguez JJ (2017) Naturally-occurring iron minerals as inexpensive catalysts for CWPO. Appl Catal B 203:166–173

    CAS  Google Scholar 

  • Nadejde C, Neamtu M, Hodoroaba VD, Schneider RJ, Ababei G, Panne U (2016) Hybrid iron-based core–shell magnetic catalysts for fast degradation of bisphenol A in aqueous systems. Chem Eng J 302:587–594

    CAS  Google Scholar 

  • Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi K (2000) Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J Mol Catal A 161:205–212

    CAS  Google Scholar 

  • Ou M, Wan S, Zhong Q, Zhang S, Song Y, Guo L, Cai W, Xu Y (2018) Hierarchical Z-scheme photocatalyst of g-C3N4@Ag/BiVO4 (040) with enhanced visible-light-induced photocatalytic oxidation performance. Appl Catal B 221:97–107

    CAS  Google Scholar 

  • Owusu SO, Adewuyi YG (2006) Sonochemical removal of nitric oxide from flue gases. Ind Eng Chem Res 45:4475–4485

    CAS  Google Scholar 

  • Qin W, Chen Q, Wang Y, Dong C, Zhang J, Li W, Yang Y (2013) Theoretical study of oxidation–reduction reaction of Fe2O3 supported on MgO during chemical looping combustion. Appl Surf Sci 266:350–354

    CAS  Google Scholar 

  • Song Z, Wang B, Yu J, Ma C, Zhou C, Chen T, Yan Q, Wang K (2017) Density functional study on the heterogeneous oxidation of NO over α-Fe2O3 catalyst by H2O2: effect of oxygen vacancy. Appl Surf Sci 413:292–301

    CAS  Google Scholar 

  • Song Z, Wang B, Yu J, Ma C, Chen T, Yang W, Liu S, Sun L (2018) Effect of Ti doping on heterogeneous oxidation of NO over Fe3O4 (1 1 1) surface by H2O2: a density functional study. Chem Eng J 354:517–524

    CAS  Google Scholar 

  • Svensson R, Ljungström E (1988) A kinetic study of the decomposition of HNO3 and its reaction with NO. Int J Chem Kinet 20:857–866

    CAS  Google Scholar 

  • Tong T, Chen J, Xiong S, Yang W, Yang Q, Yang L, Peng Y, Liu Z, Li J (2019) Vanadium-density-dependent thermal decomposition of NH4HSO4 on V2O5/TiO2 SCR catalysts. Catal Sci Technol 9:3779–3787

    CAS  Google Scholar 

  • Wang L, Duan S, Jin P, She H, Huang J, Lei Z, Zhang T, Wang Q (2018) Anchored Cu(II) tetra(4-carboxylphenyl)porphyrin to P25 (TiO2) for efficient photocatalytic ability in CO2 reduction. Appl Catal B 239:599–608

    CAS  Google Scholar 

  • Wang Z, Lun L, Tan Z, Zhang Y, Li Q (2019a) Simultaneous wet desulfurization and denitration by an oxidant absorbent of NaClO2/CaO2. Environ Sci Pollut R 26:29032–29040

    CAS  Google Scholar 

  • Wang B, Li W, Yang W, Nie J, Zhou Y, Sun L (2019b) Investigation of gasification atmosphere on nickel and vanadium transformation of petroleum coke by thermodynamic equilibrium calculation. Ind Eng Chem Res 58:21208–21218

    CAS  Google Scholar 

  • Wang Y, Liu Y, Liu Y (2019c) Elimination of nitric oxide using new Fenton process based on synergistic catalysis: optimization and mechanism. Chem Eng J 372:92–98

    CAS  Google Scholar 

  • Wang Z, Wang Z, Xu K (2017) Optimization of wet denitration by dual oxidant (H2O2/S2O82−) advanced oxidation process. Fuel Process Technol 156:82–89

    CAS  Google Scholar 

  • Wang Z, Zhou J, Zhu Y, Wen Z, Liu J, Cen K (2007) Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results. Fuel Process Technol 88:817–823

    CAS  Google Scholar 

  • Weirich TE, Winterer M, Seifried S, Mayer J (2002) Structure of nanocrystalline anatase solved and refined from electron powder data. Acta Crystallog A 58:308–315

    CAS  Google Scholar 

  • Wu B, Xiong Y (2018) A novel low-temperature NO removal approach with •OH from catalytic decomposition of H2O2 over La1-xCaxFeO3 oxides. J Chem Technol Biotechnol 93:43–53

    CAS  Google Scholar 

  • Wu B, Zhang S, He S, Xiong Y (2019) Follow-up mechanism study on NO oxidation with vaporized H2O2 catalyzed by Fe2O3 in a fixed-bed reactor. Chem Eng J 356:662–672

    CAS  Google Scholar 

  • Xie W, Xu C, Zhang J, Liu Y, Xi J, Lv J, Gu Z (2019) Simultaneous removal of SO2 and NO using H2O2/urea activated by vacuum ultraviolet light in a pilot-scale spraying tower. Energ Fuel 33:1325–1333

    CAS  Google Scholar 

  • Xu LJ, Wang JL (2013) Degradation of chlorophenols using a novel Fe0/CeO2 composite. Appl Catal B 142-143:396–405

    CAS  Google Scholar 

  • Yang W, Wang B, Lei S, Wang K, Chen T, Song Z, Ma C, Zhou Y, Sun L (2019a) Combustion optimization and NOx reduction of a 600 MWe down-fired boiler by rearrangement of swirl burner and introduction of separated over-fire air. J Clean Prod 210:1120–1130

    CAS  Google Scholar 

  • Yang B, Ma S, Cui R, Sun S, Wang J, Li S (2019b) Simultaneous removal of NOx and SO2 with H2O2 catalyzed by alkali/magnetism-modified fly ash: high efficiency, low cost and catalytic mechanism. Chem Eng J 359:233–243

    CAS  Google Scholar 

  • Yang Y, Liu J, Wang Z, Miao S, Ding J, Yu Y, Zhang J (2019c) A complete catalytic reaction scheme for Hg0 oxidation by HCl over RuO2/TiO2 catalyst. J Hazard Mater 373:660–670

    CAS  Google Scholar 

  • Zhang A, Zhang Z, Lu H, Liu Z, Xiang J, Zhou C, Xing W, Sun L (2015) Effect of promotion with Ru addition on the activity and SO2 resistance of MnOx–TiO2 adsorbent for Hg0 removal. Ind Eng Chem Res 54:2930–2939

    CAS  Google Scholar 

  • Zhao Y, Hao R, Qi M (2015) Integrative process of preoxidation and absorption for simultaneous removal of SO2, NO and Hg0. Chem Eng J 269:159–167

    CAS  Google Scholar 

  • Zhao Y, Yuan B, Shen Y, Hao R, Yang S (2018) Simultaneous removal of NO and SO2 from flue gas using vaporized H2O2 catalyzed by nanoscale zero-valent iron. Environ Sci Pollut R 25:25526–25537

    CAS  Google Scholar 

  • Zhou C, Sun L, Zhang A, Ma C, Wang B, Yu J, Su S, Hu S, Xiang J (2015a) Elemental mercury (Hg0) removal from containing SO2/NO flue gas by magnetically separable Fe2.45Ti0.55O4/H2O2 advanced oxidation processes. Chem Eng J 273:381–389

    CAS  Google Scholar 

  • Zhou C, Sun L, Xiang J, Hu S, Su S, Zhang A (2015b) The experimental and mechanism study of novel heterogeneous Fenton-like reactions using Fe3−xTixO4 catalysts for Hg0 absorption. P Combust Inst 35:2875–2882

    CAS  Google Scholar 

  • Zhou C, Song Z, Yang H, Wu H, Wang B, Yu J, Sun L (2018) Insight into elemental mercury (Hg0) removal from flue gas using UV/H2O2 advanced oxidation processes. Environ Sci Pollut R 25:21097–21105

    CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the extended help from the Analytical and Testing Center of Huazhong University of Science and Technology. Authors also express thanks to Dr. Yongqing Xu and Dr. Lei Chen.

Funding

This work was supported by National Key R&D Program of China (2019YFC190127) and National Natural Science Foundation of China (NSFC) (Nos. 51576073).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ben Wang or Lushi Sun.

Additional information

Responsible editor: Vítor Pais Vilar

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Wang, B., Yang, W. et al. Research on NO and SO2 removal using TiO2-supported iron catalyst with vaporized H2O2 in a catalytic oxidation combined with absorption process. Environ Sci Pollut Res 27, 18329–18344 (2020). https://doi.org/10.1007/s11356-020-08042-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08042-6

Keywords

Navigation