Skip to main content
Log in

Protective effect of catechin on pentachlorophenol-induced cytotoxicity and genotoxicity in isolated human blood cells

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pentachlorophenol (PCP) is an organochlorine compound that is used as pesticide, biocide, and wood preservative. PCP is highly toxic and carcinogenic. It has been detected in food and several consumable products. The toxicity of PCP is thought to be due to generation of oxidative stress in cells. We examined whether the dietary antioxidant catechin can attenuate or protect human erythrocytes and lymphocytes against PCP-induced cytotoxicity and genotoxicity, respectively. Human erythrocytes were treated with increasing concentrations of catechin (0.05–2.5 mM) for 30 min followed by addition of 0.75 mM PCP and further incubation for 4 h at 37 °C. Hemolysates were prepared and assayed for various biochemical parameters. Treatment with PCP alone increased the generation of reactive oxygen and nitrogen species, lipid and protein oxidation, and damaged the plasma membrane, when compared to PCP untreated (control) cells. It significantly decreased glutathione level, total sulfhydryl content, and cellular antioxidant power. PCP treatment lowered the activity of antioxidant enzymes and inhibited enzymes of glucose metabolism. However, prior incubation with catechin attenuated the PCP-induced changes in all these parameters in a catechin concentration-dependent manner. Scanning electron microscopy of erythrocytes confirmed these biochemical results. PCP treatment converted the normal discoidal erythrocytes to irregularly contracted cells, acanthocytes, and echinocytes but the presence of catechin inhibited these morphological changes and erythrocytes retained their biconcave shape to a large extent. Genotoxicity was studied in human lymphocytes by single-cell gel electrophoresis (comet assay). It showed strand breaks and longer comet tail length in PCP alone treated cells. The comet tail length was reduced in the catechin +PCP-treated lymphocytes showing that catechin protected cells from PCP-induced DNA damage. These results show that catechin protects human blood cells against PCP-induced oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

AChE:

Acetylcholinesterase

AFR:

Ascorbate free radical

AMP:

Adenosine 5′-monophosphate

AO:

Antioxidant

AOs:

Antioxidants

AOPP:

Advanced oxidation protein products

ATP:

Adenosine 5′-triphosphate

ATPase:

Adenosine triphosphatase

CTN:

Catechin

CUPRAC:

Cupric reducing antioxidant capacity

DHE:

Dihydroethidium

DCFH-DA:

2,7-dichlorodihydrofluorescein diacetate

DPPH:

2,2-diphenyl-1-picrylhydrazyl

DTNB:

5,5′-dithiobisnitrobenzoic acid

EDTA:

Ethylenediaminetetraacetic acid

FRAP:

Ferric reducing antioxidant power

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

G6PD:

Glucose 6-phosphate dehydrogenase

GR:

Glutathione reductase

GST:

Glutathione-S-transferase

GPx:

Glutathione peroxidase

Hb:

Hemoglobin

H2O2 :

Hydrogen peroxide

LDH:

Lactate dehydrogenase

LPO:

Lipid peroxidation

NADP+ and NADPH:

Oxidized and reduced nicotinamide adenine dinucleotide phosphate

NAD+ and NADH:

Oxidized and reduced nicotinamide adenine dinucleotide

Na+K+ATPase:

Sodium potassium ATPase

PCP:

Pentachlorophenol

PK:

Pyruvate kinase

PMRS:

Plasma membrane redox system

RBC:

Red blood cells

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SH:

Sulfhydryl

SOD:

Cu-Zn superoxide dismutase

TBS:

Tris buffered saline

TR:

Thioredoxin reductase

Tris:

Tris(hydroxymethyl)aminomethane

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  Google Scholar 

  • Arai M, Kikuchi N, Itokawat M, Rabbani N, Thornalley PJ (2014) Measurement of glyoxalase activities. Biochem Soc Trans 42:491–494

    CAS  Google Scholar 

  • Avron M, Shavit N (1963) A sensitive and simple method for determination of ferrocyanide. Anal Biochem 6:549–554

    CAS  Google Scholar 

  • Batata A, Shen B (1993) Chronic lymphocytic leukemia with low lymphocyte count. Cancer 71(9):2732–2738

    CAS  Google Scholar 

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    CAS  Google Scholar 

  • Bergmeyer HU, Grassl M, Walter HE (1983) In: Bergmeyer HU (ed) Methods of enzymatic analysis, 3rd edn. Verlag Chemie, Deerfield Beach, pp 222–223

  • Bergmeyer HU, Gawehn K, Grassl M (1974) Pyruvate kinase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol I, 2nd edn. Academic Pres Inc., New York, pp 509–510

    Google Scholar 

  • Beutler E (1984) Red cell metabolism: a manual of biochemical methods, 3rd edn. Grune and Stratton, New York

    Google Scholar 

  • Bolotta A, Battistelli M, Falcieri E et al (2018) Oxidative stress in autistic children alters erythrocyte shape in the absence of quantitative protein alterations and of loss of membrane phospholipid asymmetry. Oxidative Med Cell Longev:6430601

  • Bonting SL, Simon KA, Hawkins NM (1961) Studies on sodium-potassium-activated adenosine triphosphatase: I. quantitative distribution in several tissues of the cat. Arch Biochem Biophys 95:416–423

    CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    CAS  Google Scholar 

  • Carizo D, Grimalt J, Ribas-Fito N, Torrent M, Sunyer J (2008) Pentachlorobenzene, hexachlorobenzene and pentachlorophenol in children’s serum from industrial and rural populations after restricted use. Ecotoxicol Environ Saf 71:260–266

    Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    CAS  Google Scholar 

  • Carstens C, Blum J, Wittte I (1990) The role of hydroxyl radical in tetrachloroquinone induced DNA strand breaks formation in PM2 DNA and human fibroblasts. Chem Biol Interact 74:305–314

    CAS  Google Scholar 

  • Carvalho MB, Martins I, Medeiros J, Tavares S, Planchon S, Renaut J, Núñez O, Gallart-Ayala H, Galceran MT, Hursthouse A, Silva Pereira C (2013) The response of Mucor plumbeus to pentachlorophenol: a toxicoproteomics study. J Proteome 78:159–171

    CAS  Google Scholar 

  • Cekic SD, Kara N, Tutem E, Apak R (2012) Protein-incorporated serum total antioxidant capacity measurement by a modified CUPRAC (cupric reducing antioxidant capacity) method. Anal Lett 45:754–763

    CAS  Google Scholar 

  • Chen HM, Lee YH, Wang YJ (2015) ROS-triggered signaling pathways involved in the cytotoxicity and tumor promotion effects of pentachlorophenol and tetrachlorohydroquinone. Chem Res Toxicol 28(3):339–350

    CAS  Google Scholar 

  • Chtourou Y, Trabelsi K, Fetoui H, Mkannez G, Kallel H, Zeghal N (2011) Manganese induces oxidative stress, redox state unbalance and disrupts membrane bound ATPases on murine neuroblastoma cells in vitro: protective role of silymarin. Neurochem Res 36(8):1546–1557

    CAS  Google Scholar 

  • Demers PA, Davies HW, Friesen MC, Hertzman C, Ostry A, Hershler R, Teschke K (2006) Cancer and occupational exposure to pentachlorophenol and tetrachlorophenol. Cancer Causes Control 17:749–758

    Google Scholar 

  • Drabkin DL, Austin JH (1935) Spectrophotometric studies II. Preparation from washed blood cells; nitric oxide and sulf-hemoglobin. J Biol Chem 112:51–66

    CAS  Google Scholar 

  • Ellman GL, Countney DK, Andres VJ, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  Google Scholar 

  • Fan FY, Sang LX, Jiang M (2017) Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules 22(3):484

    Google Scholar 

  • Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    CAS  Google Scholar 

  • Fraga CG, Galleano M, Verstraeten SV, Oteiza PI (2010) Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Asp Med 31:435–445

    CAS  Google Scholar 

  • Gay CA, Gebicki JM (2000) A critical evaluation of the effect of sorbitol on the ferric–xylenol orange hydroperoxide assay. Anal Biochem 284(2):217–220

    CAS  Google Scholar 

  • Gay CA, Gebicki JM (2002) Measurement of protein and lipid hydroperoxides in biological systems by the ferric-xylenol orange method. Anal Biochem 315:29–35

    Google Scholar 

  • Grace RF, Glader B (2018) Red blood cell enzyme disorders. Pediatr Clin N Am 65(3):579–595

    Google Scholar 

  • Grzesik M, Naparło K, Bartosz G, Sadowska-Bartosz I (2018) Antioxidant properties of catechins: comparison with other antioxidants. Food Chem 241:480–492

    CAS  Google Scholar 

  • Guyton KZ, Loomis D, Grosse Y, el Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Mattock H, Straif K, International Agency for Research on Cancer Monograph Working Group (2016) Carcinogenicity of pentachlorophenol and some related compounds. Lancet Oncol 17(12):1637–1638

    CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jokoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:130–139

    Google Scholar 

  • Haenen GR, Paquay JB, Korthouwer RE, Bast A (1997) Peroxynitrite scavenging by flavonoids. Biochem Biophys Res Commun 236(3):591–593

    CAS  Google Scholar 

  • Hanasand M, Omdal R, Norheim KB, Gøransson LG, Brede C, Jonsson G (2012) Improved detection of advanced oxidation protein products in plasma. Clin Chim Acta 413:901–906

    CAS  Google Scholar 

  • Heppel PA, Hilmore RJ (1951) Purification and properties of 5-nucleotidase. J Biol Chem 88:665–676

    Google Scholar 

  • Huang JC, Li DJ, Diao JC, Hou J, Yuan JL, Zou GL (2007) A novel fluorescent method for determination of peroxynitrite using folic acid as a probe. Talanta 72(4):1283–1287

    CAS  Google Scholar 

  • IARC (2019) Pentachlorophenol and some related compounds. Working group on the evaluation of carcinogenic risk to humans. International Agency for Research on Cancer, Lyon, pp 33–123

    Google Scholar 

  • Isemura M (2019) Catechin in human health and disease. Molecules. 24(3):528

    Google Scholar 

  • Keller A, Mohamed A, Drose S, Brandt U, Fleming I, Brandes RP (2004) Analysis of dichlorodihydrofluorescein and dihydrocalcein as probes for the detection of intracellular reactive oxygen species. Free Radic Res 38(12):1257–1267

    CAS  Google Scholar 

  • Khundmiri SJ, Asghar M, Khan F, Salim S, Yusufi AN (2004) Effect of ischemia and reperfusion on enzymes of carbohydrate metabolism in rat kidney. J Nephrol 17:377–383

    CAS  Google Scholar 

  • Kirsch M, de Groot H (2002) Formation of peroxynitrite from reaction of nitroxyl anion with molecular oxygen. J Biol Chem 277(16):13379–13388

    CAS  Google Scholar 

  • Lampi P, Vartiainen T, Tuomisto J (1990) Population exposure to chlorophenols, dibenzo-p-dioxins and dibenzofurans after a prolonged ground water pollution by chlorophenols. Chemosphere 20:625–634

    CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    CAS  Google Scholar 

  • Maheshwari N, Khan FH, Mahmood R (2019) Pentachlorophenol-induced cytotoxicity in human erythrocytes: enhanced generation of ROS and RNS, lowered antioxidant power, inhibition of glucose metabolism, and morphological changes. Environ Sci Pollut Res Int 26(13):12985–13001

    CAS  Google Scholar 

  • Manson RP (1979) Free radicals metabolites of foreign compounds and their toxicological significance. In: Hodgson E, Bend JR, Philpot RM (eds) Reviews in biochemical toxicology. Elsevier, Amsterdam, pp 151–200

    Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    CAS  Google Scholar 

  • Martin TJ, Gabure S, Maise J, Snipes S et al (2019) The organochlorine pesticides pentachlorophenol and dichlorodiphenyltrichloroethane increase secretion and production of interleukin 6 by human immune cells. Environ Toxicol Pharmacol 72:103263

    CAS  Google Scholar 

  • May JM, Qu ZC, Cobb CE (2004) Human erythrocyte recycling of ascorbic acid: relative contributions from the ascorbate free radical and dehydroascorbic acid. J Biol Chem 279:14975–14982

    CAS  Google Scholar 

  • Meeran SM, Mantena SK, Elmets CA, Katiyar SK (2006) (−)-Epigallocatechin-3-gallate prevents photocarcinogenesis in mice through interleukin-12-dependent DNA repair. Cancer Res 66:5512–5520

    CAS  Google Scholar 

  • Michalowicz J (2010) Pentachlorophenol and its derivatives induce oxidative damage and morphological changes in human lymphocytes (in vitro). Arch Toxicol 84(5):379–387

    CAS  Google Scholar 

  • Michalowicz J, Włuka A, Cyrkler M, Macczak A, Sicinska P, Mokra K (2018) Phenol and chlorinated phenols exhibit different apoptotic potential in human red blood cells (in vitro study). Environ Toxicol Pharmacol 61:95–101

    CAS  Google Scholar 

  • Mike HF, Donald Nicholas DJ, Schultz TP (2006) Non-arsenical wood protection: alternatives for CCA, creosote, and pentachlorophenol. In: Townsend TG, Solo-Gabriele H (eds) Environmental impact of treated wood. CRC/Taylor and Francis, New York Ch, 2

    Google Scholar 

  • Mishra K, Ojha H, Chaudhury NK (2012) Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chem 130:1036–1043

    CAS  Google Scholar 

  • Mohrenweiser HW, Novotny JE (1982) ACP1GUA-1-a low-activity variant of human erythrocyte acid phosphatase: association with increased glutathione reductase activity. Am J Hum Genet 34:425–433

    CAS  Google Scholar 

  • Nagababu E, Fabry ME, Nagel RL, Rifkind JM (2008) Heme degradation and oxidative stress in murine models for hemoglobinopathies: thalassemia, sickle cell disease and hemoglobin C disease. Blood Cells Mol Dis 41:60–66

    CAS  Google Scholar 

  • Nakagawa T, Yokozawa T (2002) Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol 40:1745–1750

    CAS  Google Scholar 

  • Nourooz-Zadeh J, Tajaddini-Sarmadi J, Wolff SP (1994) Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem 220:403–409

    CAS  Google Scholar 

  • Panter SS (1994) Release of iron from hemoglobin. Methods Enzymol 231:502–514

    CAS  Google Scholar 

  • Paquay JB, Haenen GR, Stender G, Wiseman SA, Tijburg LB, Bast A (2000) Protection against nitric oxide toxicity by tea. J Agric Food Chem 48(11):5768–5772

    CAS  Google Scholar 

  • Pedro AC, Maciel GM, Rampazzo Ribeiro V, Haminiuk CW (2019) Fundamental and applied aspects of catechins from different sources: a review. Int J Food Sci Technol:1–14

  • Prieto P, Pinda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–347

    CAS  Google Scholar 

  • Radi R (2018) Oxygen radicals, nitric oxide and peroxynitrite: redox pathways in molecular medicine. Proc Natl Acad Sci 115(23):5839–5848

    CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    CAS  Google Scholar 

  • Rifkind JM, Mohanty JG, Nagababu E (2015) The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions. Front Physiol 5:500

    Google Scholar 

  • Rizvi SI, Srivastava N (2010) Erythrocyte plasma membrane redox system in first degree relatives of type 2 diabetic patients. Int J Diabetes Mellitus 2:119–121

    Google Scholar 

  • Rizvi SI, Pandey KB, Jha R, Maurya PK (2009) Ascorbate recycling by erythrocytes during aging in humans. Rejuvenation Res 12:3–6

    CAS  Google Scholar 

  • Rizvi SI, Jha R, Pandey KB (2010) Activation of erythrocyte plasma membrane redox system provides a useful method to evaluate antioxidant potential of plant polyphenols. Methods Mol Biol 594:341–348

    CAS  Google Scholar 

  • Romero FJ, Bosch-Morell F, Romero MJ et al (1998) Lipid peroxidation products and antioxidants in human disease. Environ Health Perspect 106(5):1229–1234

    CAS  Google Scholar 

  • Saldanha C (2017) Human erythrocyte acetylcholinesterase in health and disease. Molecules. 22(9):1499

    Google Scholar 

  • Schutt F, Aretz S, Auffarth GU, Kopitz J (2012) Moderately reduced ATP levels promote oxidative stress and debilitate autophagic and phagocytic capacities in human RPE cells. Invest Ophthalmol Vis Sci 53(9):5354–5361

    Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem 25:192–205

    CAS  Google Scholar 

  • Sekowskia S, Terebkaa M, Veikob A et al (2018) Epigallocatechin gallate (EGCG) activity against UV light-induced photo damages in erythrocytes and serum albumin-theoretical and experimental studies. J Photochem Photobiol A Chem 356:379–388

    Google Scholar 

  • Shonk CC, Boxer GE (1964) Enzyme patterns in human tissues I. Methods for the determination of glycolytic enzymes. Cancer Res 24:709–721

    CAS  Google Scholar 

  • Simos YV, Verginadis II, Toliopoulos IK, Velalopoulou AP, Karagounis IV, Karkabounas SC, Evangelou AM (2012) Effects of catechin and epicatechin on superoxide dismutase and glutathione peroxidase activity, in vivo. Redox Rep 17(5):181–186

    CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1998) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Google Scholar 

  • Snyder SL, Sobocinski PZ (1975) An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines. Anal Biochem 64:284–288

    CAS  Google Scholar 

  • Tamura T, Stadtman TC (1996) A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci 93:1006–1011

    CAS  Google Scholar 

  • Weng SL, Huang KY, Kaunang FJ et al (2017) Investigation and identification of protein carbonylation sites based on position-specific amino acid composition and physicochemical features. BMC Bioinformatics 18(66):1472–1478

    Google Scholar 

  • Wojtala A, Bonora M, Malinska D, Pinton P, Duszynski J, Wieckowski MR (2014) Methods to monitor ROS production by fluorescence microscopy and fluorometry. Methods Enzymol 542:243–262

    CAS  Google Scholar 

  • Yetuk G, Pandir D, Bas H (2014) Protective role of catechin and quercetin in sodium benzoate-induced lipid peroxidation and the antioxidant system in human erythrocytes in vitro. Sci World J:874824

  • Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, Frutos MJ, Galtier P, Gott D (2018) Scientific opinion on the safety of green tea catechins. E Po F Additives, N Sat Food. EFSA J 16:e05239. Cr

    Google Scholar 

  • Zhu QY, Schramm DD, Gross HB, Holt RR, Kim SH, Yamaguchi T et al (2005) Influence of cocoa flavanols and procyanidins on free radical-induced human erythrocyte hemolysis. Clin Dev Immunol 12(1):27–34

    CAS  Google Scholar 

Download references

Acknowledgment

Financial support to the Department of Biochemistry from the UGC-SAP-DRS III, DST-PURSE II, and DBT-BUILDER programs is gratefully acknowledged. NM is the recipient of Senior Research Fellowship from CSIR, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riaz Mahmood.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Mohamed Abdel-Daim

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maheshwari, N., Mahmood, R. Protective effect of catechin on pentachlorophenol-induced cytotoxicity and genotoxicity in isolated human blood cells. Environ Sci Pollut Res 27, 13826–13843 (2020). https://doi.org/10.1007/s11356-020-07969-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-07969-0

Keywords

Navigation