Skip to main content
Log in

Evaluation of geochemical baselines and metal enrichment factor values through high ecological quality reference points: a novel methodological approach

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, we propose a new approach to estimate geochemical local baselines and enrichment factor values for metals in riverine sediments. The goal is to describe catchment areas characterized by intensive and spread anthropogenic activities, for which it is challenging to identify undisturbed sites to utilize as reference. The case study is the Nestore river basin (Central Italy). Our approach is based on the use of ecological quality as a criterion to select the reference points in the normalization processes of metal baselines. The rationale is to assume that the sediments with a better environmental quality are anthropogenically least impaired. On these grounds, we detected geochemical local baselines and enrichment factor values of various metals (Ca, Co, Cr, Cu, Mn, Ni, Pb, Se, Sr, and Zn). Also, this approach allowed highlighting a major level of pollution for the most downstream site of Nestore river and its left tributaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Ghani NT, Elchaghaby GA (2007) Influence of operating conditions on the removal of Cu, Zn, Cd and Pb ions from wastewater by adsorption. Int J Environ Sci Technol 4:451–456

    CAS  Google Scholar 

  • Alexander CR, Smith RG, Calder FD, Schropp SJ, Windom HL (1993) The historical record of metal enrichments in two Florida estuaries. Estuaries 16:627–637

    CAS  Google Scholar 

  • Ali MM, Ali ML, Islam MS, Rahmand MZ (2016) Preliminary assessment of heavy metals in water and sediment of Karnaphuli Rive, Bangladesh. Environ Nanotechnol Monit Manag 5:27–35

    Google Scholar 

  • Aloupi M, Angelidis M (2001) Normalization to lithium for the assessment of metal contamination in coastal sediment cores from the Aegean Sea, Greece. Mar Environ Res 52:1–12

    CAS  Google Scholar 

  • Analytical Methods Committee (1994) Is my calibration linear? Analyst 119:2363

    Google Scholar 

  • Apostolico F, Vercillo F, La Porta G, Ragni B (2016) Long-term changes in diet and trophic niche of the European wildcat (Felis silvestris silvestris) in Italy. Mamm Res 61:109–119

    Google Scholar 

  • ARPA Umbria (2010) Bacino idrografico del Fiume Nestore - Monitoraggio chimico e microbiologico di acque e scarichi - Relazione tecnica

  • Belon E, Boisson M, Deportes IZ, Eglin TK, Feix I, Bispo AO, Galsomies L, Leblond S, Guellier CR (2012) An inventory of trace elements inputs to French agricultural soils. J Asian Earth Sci Sci Total Environ 439:87–95

    CAS  Google Scholar 

  • Birch G, Davies K (2003) A scheme for assessing human impact and sediment quality in coastal waterways. Coastal GIS 2003: an integrated approach to Australian coastal issues, Wollongong, University of Wollongong

  • Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–523

    CAS  Google Scholar 

  • Boughriet A, Quddance B, Fischer JC, Wartel M, Leman G (1992) Variability of dissolved Mn and Zn in the Seine Estuary and chemical speciation of these metals in suspended matter. Water Res 26:1359–1378

    CAS  Google Scholar 

  • Cereghino R, Park YS (2009) Review of the self-organizing map (SOM) approach in water resources: commentary. Environ Model Softw 24:945–947

    Google Scholar 

  • Colizza E, Fontolan G, Brambati A (1996) Impact of a coastal disposal site for inert wastes on the physical marine environment, Barcola-Bovedo, Trieste, Italy. Environ Geol 27(4):270–285

    CAS  Google Scholar 

  • Cooke TD, Drury DD (1998) Calabazas Creek pilot sediment sampling study. Proc.1998 NWQMC National Monitoring Conference: Monitoring Critical Foundations to Protect Our Waters. 1998. Reno, Nevada

  • Darnley AG (1997) A global geochemical reference network: the foundation for geochemical baselines. J Geochem Explor 60(1):1–5

    CAS  Google Scholar 

  • Daskalakis K, O’Connor T (1995) Normalization and elemental sediment contamination in the coastal. United States. Environ Sci Technol 29:470–477

    CAS  Google Scholar 

  • Di Veroli A, Selvaggi R, Pelligrino RM, Goretti E (2010) Sediment toxicity and deformities of chironomid larvae in Lake Piediluco (Central Italy). Chemosphere 79:33–39

    Google Scholar 

  • Di Veroli A, Santoro F, Pallottini M, Selvaggi R, Scardazza F, Cappelletti D, Goretti E (2014) Deformities of chironomid larvae and heavy metal pollution: from laboratory to field studies. Chemosphere 112:9–17

    Google Scholar 

  • El-Moselhy KM (2006) Distribution of vanadium in bottom sediments from the marine coastal area of the Egyptian Seas. Egypt J Aquat Res 32(1):12–21

    CAS  Google Scholar 

  • EURACHEM (1998) The fitness for purpose of analytical methods. A laboratory guide to method validation and related topics, 1st Internet version. Athens: EURACHEM

  • Fabrizi A, Goretti E, Compin A, Céréghino R (2010) Influence of fish farming on the spatial patterns and biological traits of river invertebrates in an Apennine stream system (Italy). Int Rev Hydrobiol 95:410–427

    Google Scholar 

  • Goretti E, Pallottini M, Cenci Goga BT, Selvaggi R, Petroselli C, Vercillo F, Cappelletti D (2018) Mustelids as bioindicators of the environmental contamination by heavy metals. Ecol Indic 94:20–327

    Google Scholar 

  • Grant A, Middleton R (1990) An assessment of metal contamination of sediments in the Humber Estuary, U.K. Estuar. Coast. Shelf Sci 31:71–85

    CAS  Google Scholar 

  • Islam MS, Ahmed MK, Raknuzzaman M, Habibullah-Al-Mamun M, Islam MK (2015) Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecol Indic 48:282–291

    CAS  Google Scholar 

  • Jacobacci A, Bergomi C, Centamore E, Malatesta A, Malferrari N, Martelli G, Pannuzi L, Zattini N (1970) Note Illustrative dei Fogli 115 “Città di Castello”, 122 “Perugia” e 130 “Orvieto”, Servizio Geologico d’Italia

  • Jiang J, Wang J, Liu S, Lin C, He M, Liu X (2013) Background, baseline, normalization, and contamination of heavy metals in the Liao River Watershed sediments of China. J Asian Earth Sci 73:87–94

    Google Scholar 

  • Klavins M, Briede A, Rodinov V, Kokorite I, Parele E, Klavina I (2000) Heavy metals in river of Lativa. Sci Total Environ 262:175–183

    CAS  Google Scholar 

  • Lorenzoni M, Corboli M, Grillo E, Pedicillo G, Carosi A, Viali P, Ghetti L, Baldini G, Zeetti A, Natali M, Dolciami R, Biscaro Parrini A, Mezzetti A, Mussone M, Andreani M, Bruchia A, Cassieri S, De Luca M, Quondam SL, Uzzoli C, Di Brizio M (2004) La carta ittica della Regione Umbria: bacino del Fiume Nestore. Regione Umbria, Perugia

    Google Scholar 

  • Loring DH (1990) Lithium - a new approach for the granulometric normalization of trace metal data. Mar Chem 26:155–168

    Google Scholar 

  • Loring DH (1991) Normalization of heavy-metal data from estuarine and coastal sediments. ICES J Mar Sci 48:101–115

    Google Scholar 

  • Matschullat J, Ottenstein R, Reimann C (2000) Geochemical background – can we calculate it? Environ. Geol. 39(9):90–1000

    Google Scholar 

  • MATT (Ministero dell’Ambiente e della Tutela del Territorio), APAT (Agenzia per la Protezione dell’Ambiente e per i Servizi Tecnici) (2005) Gli ecosistemi e i sedimenti: caratterizzazione dei sedimenti. Linee guida, protocolli operativi, attività sperimentali. Progetto nazionale di monitoraggio delle acque superficiali (IRSA, CNR)

  • Matthai C, Birch G, Bickford GP (2002) Anthropogenic trace metals in sediment and settling particulate matter on a highenergy continental shelf (Sydney, Australia). Mar Environ Res 54:99–127

    CAS  Google Scholar 

  • Nacke H, Goncalves AC Jr, Schwantes D, Nava IA, Strey L, Coelho GF (2013) Availability of heavy metals (Cd, Pb, and Cr) in agriculture from commercial fertilizers. Arch Environ Contam Toxicol 64:537–544

    CAS  Google Scholar 

  • Newman BK, Watling RJ (2007) Definition of baseline metal concentrations for assessing metal enrichment of sediment from the south-eastern Cape coastline of South Africa. Water SA 33(5):675–691

    CAS  Google Scholar 

  • Pallottini M, Goretti E, Gaino E, Selvaggi R, Cappelletti D, Céréghino R (2015) Invertebrate diversity in relation to chemical pollution in an Umbrian stream system (Italy). C R Biol 338:511–520

    Google Scholar 

  • Pallottini M, Cappelletti D, Fabrizi A, Gaino E, Goretti E, Selvaggi R, Céréghino R (2017a) Macroinvertebrate functional trait responses to chemical pollution in agricultural–industrial landscapes. River Res Appl 33:505–513

    Google Scholar 

  • Pallottini M, Goretti E, Selvaggi R, Cappelletti D, Dedieu N, Céréghino R (2017b) An efficient semi-quantitative macroinvertebrate multimetric index for the assessment of water and sediment contamination in streams. Inland Waters 7(3):314–322

    CAS  Google Scholar 

  • Pandeli E, Ferrini G, Lazzari D (1994) Lithofacies and petrography of the Macigno formation from the Abetone to the Monti del Chianti areas (Northern Apennines). Mem Soc Geol It 48(1):321–329

    Google Scholar 

  • Pardo R, Barrado E, Perez L, Vega M (1990) Determination and association of heavy metals in sediments of the Pisucrga river. Water Res 24(3):373–379

    CAS  Google Scholar 

  • Roach AC (2005) Assessment of metals in sediments from Lake Macquarie, New South Wales, Australia, using normalisation models and sediment quality guidelines. Mar Environ Res 59:453–472

    CAS  Google Scholar 

  • Rosenberg DM, Resh VH (1993) Introduction to freshwater biomonitoring and benthic macroinvertebrates. Freshwater biomonitoring benthic macroinvertebrates. Chapman and Hall, New York

    Google Scholar 

  • Rudnick RL, Gao S (2003) Vol. 3: The crust, 3.01- composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry. Elsevier-Pergamon, Oxford, pp 1–64

    Google Scholar 

  • Schiff KC, Weisberg SB (1999) Iron as a reference element for determining trace metal enrichment in southern California coastal shelf sediments. Mar Environ Res 48(2):161–176

    CAS  Google Scholar 

  • Schropp SJ, Windom HL (1988) A guide to the interpretation of metal concentrations in estuarine sediments. Coastal zone management section. Florida Department of Environmental Regulation, Tallahassee, p 44

    Google Scholar 

  • Schropp SJ, Lewis FG, Windom HL, Ryan JD, Calder FD, Burney LC (1990) Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries 13:227–235

    CAS  Google Scholar 

  • Selvaraj K, Ram Mohan V, Szefer P (2004) Evaluation of metal contamination in coastal sediments of the Bay of Bengal, India: geochemical and statistical approaches. Mar Pollut Bull 49(3):174–185

    CAS  Google Scholar 

  • Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2010) Invertébrés d’eau douce: Systématique, Biologie, Ecologie. CNRS Editions, Paris

  • Tanner PA, Leong LS, Pan SP (2000) Contamination of heavy metals in marine sediment cores from Victoria Harbour, Hong Kong. Mar Pollut Bull 40:769–779

    CAS  Google Scholar 

  • Teng YG, Ni SJ, Wang JS, Niu LG (2009) Geochemical baseline of trace elements in the sediment in Dexing area, South China. Environ Geol 57(7):1649–1660

    CAS  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Bull Geol Soc Am 72:175–192

    CAS  Google Scholar 

  • UNICHIM (2001) Chemistry laboratory guides to method validation, N. 179/1. Milan: UNICHIM

  • Usseglio-Polatera P, Richoux P, Bournaud M, Tachet H (2001) A functional classification of benthic macroinvertebrates based on biological and ecological traits: application to river condition assessment and stream management. Arch Hydrobiol Suppl-Band 139:53–83

    Google Scholar 

  • Veinott G, Perron-Cashman S, Anderson MR (2001) Baseline metal concentrations in coastal Labrador sediments. Mar Pollut Bull 42:187–192

    CAS  Google Scholar 

  • Wei C, Wen H (2005) Geochemical baselines of heavy metals in the sediments of two large freshwater lakes in China: implications for contamination character and history. Environ Geochem Health 27:5–6

    Google Scholar 

  • Weisberg SB, Wilson HT, Heimbuch DG, Windom H, Summers JK (2000) Comparison of sediment metal: aluminum relationships between the eastern and Gulf Coasts of the United States. Environ Monit Assess 61:373–385

    CAS  Google Scholar 

  • Yu K-Y, Tasi L-J, Chen S-H, Ho S-T (2001) Chemical binding of heavy metals in anoxic river sediments. Water Res 35(7):4086–4409

    CAS  Google Scholar 

  • Zhang J, Liu CL (2002) Riverine composition and estuarine geochemistry of particulate metals in china—weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54:1051–1070

    CAS  Google Scholar 

Download references

Acknowledgments

We thank MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca) and the Università degli Studi di Perugia for financial support to the project AMIS, through the program “Dipartimenti di Eccellenza–2018–20

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Selvaggi.

Additional information

Responsible editor: Stuart Simpson

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaggi, R., Damianić, B., Goretti, E. et al. Evaluation of geochemical baselines and metal enrichment factor values through high ecological quality reference points: a novel methodological approach. Environ Sci Pollut Res 27, 930–940 (2020). https://doi.org/10.1007/s11356-019-07036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07036-3

Keywords

Navigation