Skip to main content

Advertisement

Log in

Exploring the mechanisms of graphene oxide behavioral and morphological changes in zebrafish

  • Short Research and Discussion Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The presence of natural organic matter such as humic acid (HA) can influence the behavior of graphene oxide (GO) in the aquatic environment. In this study, zebrafish embryos were analyzed after 5 and 7 days of exposure to GO (100 mg L−1) and HA (20 mg L−1) alone or together. The results indicated that, regardless of the presence of HA, larvae exposed to GO for 5 days showed an increase in locomotor activity, reduction in the yolk sac size, and total length and inhibition of AChE activity, but there was no difference in enzyme expression. The statistical analysis indicated that the reductions in total larval length, yolk sac size, and AChE activity in larvae exposed to GO persisted in relation to the control group, but there was a recovery of these parameters in groups also exposed to HA. Larvae exposed to GO for 7 days did not show significant differences in locomotor activity, but the RT-PCR gene expression analysis evidenced an increase in the AChE expression. Since the embryos exposed to GO showed a reduction in overall length, they were submitted to confocal microscopy and their muscle tissue configuration investigated. No changes were observed in the muscle tissue. The results indicated that HA is associated with the toxicity risk modulation by GO and that some compensatory homeostasis mechanisms may be involved in the developmental effects observed in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Airhart MJ, Lee DH, Wilson TD, Miller BE, Miller MN, Skalko RG (2007) Movement disorders and neurochemical changes in zebrafish larvae after bath exposure to fluoxetine (PROZAC). Neurotoxicol Teratol 29(6):652–664

    Article  CAS  Google Scholar 

  • Akinyemi AJ, Oboh G, Fadaka AO, Olatunji BP, Akomolafe S (2017) Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats. Neurotoxicol 62:75–79

    Article  CAS  Google Scholar 

  • Altenhofen S, Wiprich MT, Pereira TCB, Bogo MR, Bonan CD (2017) Tebuconazole alters morphological, behavioral and neurochemical parameters in larvae and adult zebrafish (Danio rerio). Chemosphere 180:483–490

    Article  CAS  Google Scholar 

  • Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–862

    Article  CAS  Google Scholar 

  • Behra M, Cousin X, Bertrand C, Vonesch J-L, Biellmann D, Chatonnet A, Strähle U (2002) Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat Neurosci 5(2):111–118

    Article  CAS  Google Scholar 

  • Bertuzzi M, Ampatzis K (2018) Spinal cholinergic interneurons differentially control motoneuron excitability and alter the locomotor network operational range. Sci Rep 8:1988

    Article  CAS  Google Scholar 

  • Botero WG, de Oliveira LC, Cunha BB, de Oliveira LK, Gouveia D, Rocha JC, Fraceto LF, Rosa AH (2011) Characterization of the interactions between endocrine disruptors and aquatic humic substances from tropical rivers. J Braz Chem Soc 22(6):1103–1110

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bramini M, Sacchetti S, Armirotti A, Rocchi A, Vasquez E, Castellanos V, Bandiera T, Cesca F, Benfati F (2016) Graphene oxide nanosheets disrupt lipid composition, Ca2+ homeostasis, and synaptic transmission in primary cortical neurons. ACS Nano 10(7):7154–7171

    Article  CAS  Google Scholar 

  • Bundschuh M, Filser J, Lüderwald S, McKee M, Metreveli G, Schaumann G, Schulz R, Wagner S (2018) Nanoparticles in the environment, where do we come from, where do we go to? Environ Sci Eur 30(1):6

    Article  CAS  Google Scholar 

  • Castro VL, Clemente Z, Jonsson C, Silva M, Vallim JH, Medeiros AMZ, Martinez DST (2018) Nanoecotoxicity assessment of graphene oxide and its relationship with humic acid. Environ Toxicol Chem 37:1998–2012. https://doi.org/10.1002/etc.4145

    Article  CAS  Google Scholar 

  • Catarino AI, Frutos A, Henry TB (2019) Use of fluorescent-labelled nanoplastics (NPs) to demonstrate NP absorption is inconclusive without adequate controls. Sci Total Environ 670:915–920. https://doi.org/10.1016/j.scitotenv.2019.03.194

    Article  CAS  Google Scholar 

  • Chacon MA, Reyes AE, Inestrosa NC (2003) Acetylcholinesterase induces neuronal cell loss, astrocyte hypertrophy and behavioral deficits in mammalian hippocampus. J Neurochem 87:195–204

    Article  CAS  Google Scholar 

  • Chen Y, Hu X, Sun J, Zhou Q (2016a) Specific nanotoxicity of graphene oxide during zebrafish embryogenesis. Nanotoxicology 10:42–52

    CAS  Google Scholar 

  • Chen M, Yin J, Liang Y, Yuan S, Wang F, Song M, Wang H (2016b) Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish. Aquat Toxicol 174:54–60. https://doi.org/10.1016/j.aquatox.2016.02.015

    Article  CAS  Google Scholar 

  • Cheng J, Flahaut E, Cheng SH (2007) Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ Toxicol Chem 26(4):708–716

    Article  CAS  Google Scholar 

  • Cheng Y, Ren C, Ouyang S, Hu X, Zhou Q (2015) Mitigation in multiple effects of graphene oxide toxicity in zebrafish embryogenesis driven by humic acid. Environ Sci Technol 49(16):10147–10154

    Article  CAS  Google Scholar 

  • Chowdhury I, Mansukhani ND, Guiney LM, Hersam MC, Bouchard D (2015) Aggregation and stability of reduced graphene oxide, complex roles of divalent cations, pH, and natural organic matter. Environ Sci Technol 49(18):10886–10893

    Article  CAS  Google Scholar 

  • Cimbaluk GV, Ramsdorf WA, Perussolo MC, Santos HKF, da Silva de Assis HC, Schnitzler MC, Schnitzler DC, Carneiro PG, Cestari MM (2018) Evaluation of multiwalled carbon nanotubes toxicity in two fish species. Ecotoxicol Environ Saf 150:215–223

    Article  CAS  Google Scholar 

  • Clemente Z, Castro VL, Franqui L, Silva C, Martinez DST (2017) Nanotoxicity of graphene oxide, assessing the influence of oxidation debris in the presence of humic acid. Environ Pollut 225:118–128

    Article  CAS  Google Scholar 

  • Colwill RM, Creton R (2011) Locomotor behaviors in zebrafish (Danio rerio) larvae. Behav Process 86(2):222–229

    Article  Google Scholar 

  • D’Amora M, Camisasca A, Lettieri S, Giordani S (2017) Toxicity assessment of carbon nanomaterials in zebrafish during development. Nanomaterials 7(12):E414. https://doi.org/10.3390/nano7120414

    Article  CAS  Google Scholar 

  • Dasari TP, Hwang HM (2013) Effect of humic acids and sunlight on the cytotoxicity of engineered zinc oxide and titanium dioxide nanoparticles to a river bacterial assemblage. J Environ Sci 25(9):1925–1935

    Article  CAS  Google Scholar 

  • Dasmahapatra AK, Dasari TPS, Tchounwou PB (2019) Graphene-based nanomaterials toxicity in fish. Rev Environ Contam Toxicol 247:1–58

    Google Scholar 

  • De Marchi L, Neto V, Pretti C, Figueira E, Chiellini F, Morelli A, Soares AMVM, Freitas R (2018a) Toxic effects of multi-walled carbon nanotubes on bivalves, comparison between functionalized and nonfunctionalized nanoparticles. Sci Total Environ 622–623:1532–1542

    Article  CAS  Google Scholar 

  • De Marchi L, Pretti C, Gabriel B, Marques PAAP, Freitas R, Neto V (2018b) An overview of graphene materials: properties, applications and toxicity on aquatic environments. Sci Total Environ 631-632:1440–1456

    Article  CAS  Google Scholar 

  • Deng CH, Gong JL, Zeng GM, Jiang Y, Zhang C, Liu H-Y, Huan S-Y (2016) Graphene–CdS nanocomposite inactivation performance toward Escherichia coli in the presence of humic acid under visible light irradiation. Chem Eng J 284:41–53

    Article  CAS  Google Scholar 

  • Drapeau P, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Brustein E (2002) Development of the locomotor network in zebrafish. Prog Neurobiol 68(2):85–111

    Article  CAS  Google Scholar 

  • Drews U (1975) Cholinesterase in embryonic development. Prog Histochem Cytochem 7:1–52

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Falahati M, Attar F, Sharifi M, Haertlé T, Berret JF, Khan RH, Saboury AA (2019) A health concern regarding the protein corona, aggregation and disaggregation. Biochim Biophys Acta Gen Subj 1863(5):971–991

    Article  CAS  Google Scholar 

  • Falgairolle M, O’Donovan MJ (2019) Feedback regulation of locomotion by motoneurons in the vertebrate spinal cord. Curr Opin Physiology 8:50–55

    Article  Google Scholar 

  • Feng Y, Huynh KA, Xie Z, Liu G, Gao S (2019) Heteroaggregation and sedimentation of graphene oxide with hematite colloids: influence of water constituents and impact on tetracycline adsorption. Sci Total Environ 647:708–715

    Article  CAS  Google Scholar 

  • Freixa A, Acuña V, Sanchís J, Farré M, Barceló D, Sabater S (2018) Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Sci Total Environ 619–620:328–337

    Article  CAS  Google Scholar 

  • Handy RD, Ahtiainen J, Navas JM, Goss G, Bleekere EAJ, von der Kammer F (2018) Proposal for a tiered dietary bioaccumulation testing strategy for engineered nanomaterials using fish. Environ Sci: Nano 5:2030–2046. https://doi.org/10.1039/C7EN01139C

    Article  CAS  Google Scholar 

  • He K, Chen G, Zeng G, Peng M, Huang Z, Shi J, Huang T (2017) Stability, transport and ecosystem effects of graphene in water and soil environments. Nanoscale 9(17):5370–5538

    Article  CAS  Google Scholar 

  • Hu X, Chen Q, Jiang L, Yu Z, Jiang D, Yin D (2011) Combined effects of titanium dioxide and humic acid on the bioaccumulation of cadmium in Zebrafish. Environ Pollut 159(5):1151–1158

    Article  CAS  Google Scholar 

  • Hu X, Wei Z, Mu L (2017) Graphene oxide nanosheets at trace concentrations elicit neurotoxicity in the offspring zebrafish. Carbon 117:182–191

    Article  CAS  Google Scholar 

  • Hu Z, Dang Y, Liu C, Zhou L, Liu H (2019) Acute exposure to ustiloxin A affects growth and development of early life zebrafish, Danio rerio. Chemosphere 226:851–857

    Article  CAS  Google Scholar 

  • Huang SH, Hsiao CD, Lin DS, Chow CY, Chang CJ, Liau I (2011) Imaging of zebrafish in vivo with second harmonic generation reveals shortened sarcomeres associated with miopathy induced by statin. PLoS One 6(9):e24764

    Article  CAS  Google Scholar 

  • Huang D, Xu B, Wu J, Brookes PC, Xu J (2019) Adsorption and desorption of phenanthrene by magnetic graphene nanomaterials from water: roles of pH, heavy metal ions and natural organic matter. Chem Eng J 368:390–399

    Article  CAS  Google Scholar 

  • Ivask A, Juganson K, Bondarenko O, Mortimer M, Aruoja V, Kasemets K, Blinova I, Heinlaan M, Slaveykova V, Kahru A (2014) Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro, A comparative review. Nanotoxicology 8(Suppl 1):57–71. https://doi.org/10.3109/17435390.2013.855831

    Article  CAS  Google Scholar 

  • Jahan S, Alias YB, Bakar AFBA, Yusoff IB (2019) Transport and retention behavior of carbonaceous colloids in natural aqueous medium: impact of water chemistry. Chemosphere 217:213–222

    Article  CAS  Google Scholar 

  • Jeon H-J, Lee Y-H, Kim M-J, Choi S-D, Park B-J, Lee S-E (2016) Integrated biomarkers induced by chlorpyrifos in two different lifestages of zebrafish (Danio rerio) for environmental risk assessment. Environ Toxicol Pharmacol 43:166–174

    Article  CAS  Google Scholar 

  • Jin Y, Liu Z, Peng T, Fu Z (2015) The toxicity of chlorpyrifos on the early life stage of zebrafish: a survey on the endpoints at development, locomotor behavior, oxidative stress and immunotoxicity. Fish Shellfish Immunol 43:405–414

    Article  CAS  Google Scholar 

  • Kais B, Stengel D, Batel A, Braunbeck T (2015) Acetylcholinesterase in zebrafish embryos as a tool to identify neurotoxic effects in sediments. Environ Sci Pollut Res 22:16329–16339

    Article  CAS  Google Scholar 

  • Kaufer D, Friedman A, Seidman S (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393:373–377

    Article  CAS  Google Scholar 

  • Kim JY, Kim KT, Lee BG, Lim BJ, Kim SD (2013) Developmental toxicity of japanese medaka embryos by silver nanoparticles and released ions in the presence of humic acid. Ecotoxicol Environ Saf 92:57–63

    Article  CAS  Google Scholar 

  • Knafo S, Wyart C (2018) Active mechanosensory feedback during locomotion in the zebrafish spinal cord. Curr Opin Neurobiol 52:48–53

    Article  CAS  Google Scholar 

  • Koenig JA, Dao TL, Kan RK, Shih T-M (2016) Zebrafish as a model for acetylcholinesterase-inhibiting organophosphorus agent exposure and oxime reactivation. Ann N Y Acad Sci 1374:68–77

    Article  CAS  Google Scholar 

  • Kristofco LA, Haddad SP, Chambliss CK, Brooks BW (2018) Differential uptake of and sensitivity to diphenhydramine in embryonic and larval zebrafish. Environ Toxicol Chem 37(4):1175–1181

    Article  CAS  Google Scholar 

  • Kteeba SM, El-Adawi HI, El-Rayis OA, El-Ghobashy AE, Schuld JL, Svoboda KR, Guo L (2017) Zinc oxide nanoparticle toxicity in embryonic zebrafish: mitigation with different natural organic matter. Environ Pollut 230:1125–1140

    Article  CAS  Google Scholar 

  • Kudryasheva NS, Tarasova AS (2015) Pollutant toxicity and detoxification by humic substances, mechanisms and quantitative assessment via luminescent biomonitoring. Environ Sci Pollut Res 22:155–167

    Article  CAS  Google Scholar 

  • Lanphere JD, Rogers B, Luth C, Bolster CH, Walke SL (2014) Stability and transport of graphene oxide nanoparticles in groundwater and surface water. Environ Eng Sci 31(7):350–359

    Article  CAS  Google Scholar 

  • Lawrence C (2007) The husbandry of zebrafish (Danio rerio), a review. Aquaculture 269:1–20

    Article  Google Scholar 

  • Le Ray D, Juvin L, Ryczko D, Dubuc R (2011) Supraspinal control of locomotion: the mesencephalic locomotor region. Prog Brain Res 188:51–70

    Article  Google Scholar 

  • Li Q, Xie B, Hwang Y, Xu Y (2009) Kinetics of C60 fullerene dispersion in water enhanced by natural organic matter and sunlight. Environ Sci Technol 43(10):3574–3579

    Article  CAS  Google Scholar 

  • Li Y, Miao X, Chen T, Yi X, Wang R, Zhao H, Lee SM-Y, Wang X, Zheng Y (2017) Zebrafish as a visual and dynamic model to study the transport of nanosized drug delivery systems across the biological barriers. Colloids Surf B: Biointerfaces 156:227–235

    Article  CAS  Google Scholar 

  • Lia P, Xua T, Wua S, Leia L, Hea D (2017) Chronic exposure to graphene-based nanomaterials induces behavioral deficits and neural damage in Caenorhabditis elegans. J Appl Toxicol 37(10):1140–1150. https://doi.org/10.1002/jat.3468

    Article  CAS  Google Scholar 

  • Lin S, Zhao Y, Nel AE, Lin S (2013) Zebrafish: an in vivo model for nano EHS studies. Small 27(9-10):1608–1618

    Article  CAS  Google Scholar 

  • Liu X, Zhang Q, Li S, Chen D, Zhao X, Feng X (2018) Developmental toxicity and neurotoxicity of synthetic organic insecticides in zebrafish (Danio rerio): a comparative study of deltamethrin, acephate, and thiamethoxam. Chemosphere 199:16–25

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  • Lu L, Wang J, Chen B (2018) Adsorption and desorption of phthalic acid esters on graphene oxide and reduced graphene oxide as affected by humic acid. Environ Pollut 232:505–513

    Article  CAS  Google Scholar 

  • Markovic M, Kumar A, Andjelkovic I, Lath S, Kirby JK, Losic D, Batley GE, McLaughlin MJ (2018) Ecotoxicology of manufactured graphene oxide nanomaterials and derivation of preliminary guideline values for freshwater environments. Environ Toxicol Chem 37(5):1340–1348

    Article  CAS  Google Scholar 

  • McCurley AT, Callard GV (2008) Characterization of housekeeping genes in zebrafish, male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol Biol 9:102

    Article  CAS  Google Scholar 

  • Mendonça MCP, Soares ES, Jesus MB, Ceragioli HJ, Ferreira MS, Catharino RR, Hofling MA (2015) Reduced graphene oxide induces transient blood–brain barrier opening, an in vivo study. Nanobiotechnol 13:78

    Article  CAS  Google Scholar 

  • Menelaou E, Udvadia AJ, Tanguay RL, Svoboda KR (2014) Activation of α2A-containing nicotinic acetylcholine receptors mediates nicotine-induced motor output in embryonic zebrafish. Eur J Neurosci 40(1):2225–2240

    Article  Google Scholar 

  • Meshalkina DA, Kizlyk MN, Kysil EV, Collier AD, Echevarria DJ, Abreu MS, Barcellos LJG, Song C, Kalueff AV (2017) Understanding zebrafish cognition. Behav Process 141:229–241

    Article  Google Scholar 

  • Mottier A, Mouchet F, Pinelli E, Gauthier L, Flahaut E (2017) Environmental impact of engineered carbon nanoparticles: from releases to effects on the aquatic biota. Curr Opin Biotechnol 46:1–6

    Article  CAS  Google Scholar 

  • OECD (2000) Guidance Document on Aquatic Toxicity Testing of Difficult Substances and Mixtures. OECD Series on Testing and Assessment Number 23. Guidance document on aquatic toxicity testing of difficult substances and mixtures. Organization for Economic Co-Operation and Development, Paris. 53 p

  • OECD (2013) Test Guideline 236. Fish embryo acute toxicity (FET) test. https://doi.org/10.1787/9789264203709-en

  • Oh B, Lee Y, Fu M, Lee CH (2017) Computational analysis on down-regulated images of macrophage scavenger receptor. Pharm Res 34(10):2066–2074

    Article  CAS  Google Scholar 

  • Ong KJ, MacCormack TJ, Clark RJ, Ede JD, Ortega VA, Felix LC, Dang MKM, Ma G, Fenniri H, Veinot JGC, Goss GG (2014) Widespread nanoparticle-assay interference: implications for nanotoxicity testing. PLoS One 9:e90650

    Article  CAS  Google Scholar 

  • Ozkan A, Sen HM, Sehitoglu I, Alacam H, Guven M, Aras AB, Akman T, Silan C, Cosar M, Karaman HI (2015) Neuroprotective effect of humic acid on focal cerebral ischemia injury: an experimental study in rats. Inflammation 38(1):32–39. https://doi.org/10.1007/s10753-014-0005-0

    Article  CAS  Google Scholar 

  • Paatero I, Casals E, Niemi R, Özliseli E, Rosenholm JM, Sahlgren C (2017) Analyses in zebrafish embryos reveal that nanotoxicity profiles are dependent on surface functionalization controlled penetrance of biological membranes. Sci Rep 7:8423. https://doi.org/10.1038/s41598-017-09312-z

    Article  CAS  Google Scholar 

  • Park MVDZ, Bleeker EAJ, Brand W, Cassee FR, van Elk M, Gosens I, De Jong WH, Meesters JAJ, Peijnenburg WJGM, Quik JTK, Vandebriel RJ, Sips AJAM (2017) Considerations for safe innovation: the case of graphene. ACS Nano 11(10):9574–9593

    Article  CAS  Google Scholar 

  • Pecoraro R, D’Angelo D, Filice S, Scalese S, Capparucci F, Marino F, Iaria C, Guerriero G, Tibullo D, Salvaggio A, Nicotera I, Brundo MV (2018) Toxicity evaluation of graphene oxide and titania loaded nafion membranes in zebrafish. Front Physiol 8:1039

    Article  Google Scholar 

  • Peijnenburg WJGM, Baalousha M, Chen J, Chaudry Q, Von der Kammer F, Kuhlbusch TAJ, Lead J, Nickel C, Quik JTK, Renker M, Wang Z, Koelmans AA (2015) A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment. Crit Rev Environ Sci Technol 45(19):2084–2134

    Article  CAS  Google Scholar 

  • Pelka KE, Henn K, Keck A, Sapel B, Braunbeck T (2017) Size does matter- determination of the critical molecular size for the uptake of chemicals across the chorion of zebrafish (Danio rerio) embryos. Aquat Toxicol 185:1–10

    Article  CAS  Google Scholar 

  • Peng WH, Lee YC, Chau YP, Lu KS, Kung HN (2015) Short-term exposure of zebrafish embryos to arecoline leads to retarded growth, motor impairment, and somite muscle fiber changes. Zebrafish 12(1):59–70

    Article  CAS  Google Scholar 

  • Pereira VM, Bortolotto JW, Kist LW, Azevedo MB, Fritsch RS, da L OR, Pereira TC, Bonan CD, Vianna MR, Bogo MR (2012) Endosulfan exposure inhibits brain AChE activity and impairs swimming performance in adult zebrafish (Danio rerio). Neurotoxicol 33:469–475. https://doi.org/10.1016/j.neuro.2012.03.005

    Article  CAS  Google Scholar 

  • Pradhan S, Hedberg J, Rosenqvist J, Jonsson CM, Wold S, Blomberg E, Odnevall Wallinder I (2018) Influence of humic acid and dihydroxy benzoic acid on the agglomeration, adsorption, sedimentation and dissolution of copper, manganese, aluminum and silica nanoparticles - a tentative exposure scenario. PLoS One 13(2):e0192553

    Article  CAS  Google Scholar 

  • Qiang L, Cheng J, Yi J, Rotchell JM, Zhu X, Zhou J (2016) Environmental concentration of carbamazepine accelerates fish embryonic development and disturbs larvae behavior. Ecotoxicol 25:1426–1437

    Article  CAS  Google Scholar 

  • Reimer MM, Norris A, Ohnmacht J, Patani R, Zhong Z, Dias TB, Kuscha V, Scott AL, Chen YC, Rozov S, Frazer SL, Wyatt C, Higashijima S, Patton EE, Panula P, Chandran S, Becker T, Becker C (2013) Dopamine from the brain promotes spinal motor neuron generation during development and adult regeneration. Dev Cell 25(5):478–491

    Article  CAS  Google Scholar 

  • Ren C, Hu X, Li X, Zhou Q (2016) Ultra-trace graphene oxide in a water environment triggers Parkinson’s disease-like symptoms and metabolic disturbance in zebrafish larvae. Biomaterials 93:83–94

    Article  CAS  Google Scholar 

  • Rodrigues A, Brito A, Janknecht P, Proença MF, Nogueira R (2009) Quantification of humic acids in surface water: effects of divalent cations, pH, and filtration. J Environ Monit 11:377–382

    Article  CAS  Google Scholar 

  • Schierz A, Benjamin E, Wiesner MR, Bisesi JH, Sabo-Attwood T, Ferguson PL (2014) Fate of single walled carbon nanotubes in wetland ecosystems. Environ Sci: Nano 1:574–583

    CAS  Google Scholar 

  • Schür C, Rist S, Baun A, Mayer P, Hartmann NB, Wagner M (2019) WHEN Fluorescence is not a particle: the tissue translocation of microplastics in Daphnia magna seems an artifact. Environ Toxicol Chem. https://doi.org/10.1002/etc.4436

  • Shen M, Hai X, Shang Y, Zheng C, Li P, Li Y, Jin W, Li D, Li Y, Zhao J, Lei H, Xiao H, Li Y, Yan G, Cao Z, Bu Q (2019) Insights into aggregation and transport of graphene oxide in aqueous and saturated porous media: complex effects of cations with different molecular weight fractionated natural organic matter. Sci Total Environ 656:843–851

    Article  CAS  Google Scholar 

  • Smeets WJ, Gonzalez A (2000) Catecholamine systems in the brain of vertebrates, new perspectives through a comparative approach. Brain Res Rev 33:308–379. https://doi.org/10.1016/S0165-0173(00)00034-5

    Article  CAS  Google Scholar 

  • Soares JC, Pereira TCB, Costa KM, Maraschin T, Bassoc NR, Bogo MR (2017) Developmental neurotoxic effects of graphene oxide exposure in zebrafish larvae (Danio rerio). Colloids Surf B: Biointerfaces 157:335–346

    Article  CAS  Google Scholar 

  • Soreq H, Seidman S (2001) Acetylcholinesterase - new roles for an old actor. Nat Rev Neurosci 2(4):294–302

    Article  CAS  Google Scholar 

  • Souza J, Baretta JF, Santos F, Paino IM, Zucolotto V (2017) Toxicological effects of graphene oxide on adult zebrafish (Danio rerio). Aquat Toxicol 186:11–18

    Article  CAS  Google Scholar 

  • Spencer RG, Butler KD, Aiken GR (2012) Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA. J Geophys Res 117:G03001

    Article  CAS  Google Scholar 

  • Strungaru S-A, Robea MA, Plavan G, Todirascu-Ciornea E, Ciobica A, Nicoara M (2018) Acute exposure to methylmercury chloride induces fast changes in swimming performance, cognitive processes and oxidative stress of zebrafish (Danio rerio) as reference model for fish community. J Trace Elem Med Biol 47:115–123

    Article  CAS  Google Scholar 

  • Su Y, Yang G, Lu K, Petersen EJ, Mao L (2017) Colloidal properties and stability of aqueous suspensions of few-layer graphene: importance of graphene concentration. Environ Pollut 220:469–477

    Article  CAS  Google Scholar 

  • Tang R, Dodd A, Lai D, McNabb WC, Love DR (2007) Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochim Biophys Sin Shanghai 39(5):384–390

    Article  CAS  Google Scholar 

  • Teixidó E, Piqué E, Gómez-Catalán J, Llobert JM (2013) Assessment of developmental delay in the zebrafish embryo teratogenicity assay. Toxicol in Vitro 27:469–478

    Article  CAS  Google Scholar 

  • Tintignac LA, Brenner H-R, Rüegg MA (2015) Mechanisms regulating neuromuscular junction development and function and causes of muscle wasting. Physiol Rev 95:809–852

    Article  CAS  Google Scholar 

  • USEPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms 5th edn. Washington

  • Valim Brigante TA, Abe FR, Zuardi AW, Hallak JEC, Crippa JAS, de Oliveira DP (2018) Cannabidiol did not induce teratogenicity or neurotoxicity in exposed zebrafish embryos. Chem Biol Interact 291:81–86

    Article  CAS  Google Scholar 

  • van Pomeren M, Brun NR, Peijnenburg WJGM, Vijver MG (2017) Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages. Aquat Toxicol 190:40–45

    Article  CAS  Google Scholar 

  • Wang Z, Zhao J, Li F, Gao D, Xing B (2009) Chemosphere adsorption and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere 77(1):67–73

    Article  CAS  Google Scholar 

  • Wang H, Adeleye AS, Huang Y, Li F, Keller AA (2015a) Heteroaggregation of nanoparticles with biocolloids and geocolloids. Adv Colloid Interf Sci 226:24–36

    Article  CAS  Google Scholar 

  • Wang ZG, Zhou R, Jiang D, Sing JE, Xu Q, Si J, Chen Y, Zhou X, Gan L, Li JZ, Zhang H, Liu B (2015b) Toxicity of graphene quantum dots in zebrafish embryo. Biomed Environ Sci 28(5):341–351

    CAS  Google Scholar 

  • Wang M, Gao B, Tang D, Sun H, Yin X, Yu C (2018) Effects of temperature on aggregation kinetics of graphene oxide in aqueous solutions. Colloids Surf A Physicochem Eng Asp 538:63–72

    Article  CAS  Google Scholar 

  • Wu L, Liu L, Gao B, Muñoz-Carpena R, Zhang M, Chen H, Zhou Z, Wang H (2013) Aggregation kinetics of graphene oxides in aqueous solutions, experiments, mechanisms, and modeling. Langmuir 29:15174–15181

    Article  CAS  Google Scholar 

  • Yang K, Wan JM, Zhang S, Zhang Y, Lee ST, Liu Z (2011) In vivo pharmacokinetics, long-term biodistribution and toxicology of PEGylated graphene in mice. ACS Nano 5:516–522. https://doi.org/10.1021/nn1024303

    Article  CAS  Google Scholar 

  • Yang K, Chen B, Zhu X, Xing B (2016) Aggregation adsorption, and morphological transformation of graphene oxide in aqueous solutions containing different metal cations. Environ Sci Technol 50:11066–11075

    Article  CAS  Google Scholar 

  • Zhang X, Sui MH, Yan X, Huang TD, Yuan Z (2016) Mitigation in the toxicity of graphene oxide nanosheets towards Escherichia coli in the presence of humic acid. Environ Sci Process Impacts 18(6):744–750

    Article  CAS  Google Scholar 

  • Zhang X, Zhou Q, Zou W, Hu X (2017) Molecular mechanisms of developmental toxicity induced by graphene oxide at predicted environmental concentrations. Environ Sci Technol 51:7861–7871

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the CNPEM open-facilities (LCS, LAM, LMN, NBT, and LMG), CAPES, the Brazilian National Institute for Science, Technology and Innovation on Complex Functional Materials (INCT-Inomat), the Brazilian Nanotoxicology Network (Cigenanotox), the Brazilian Network of Nanotechnology Applied to Agro-business (AgroNano), and the National System of Laboratories on Nanotechnologies (SisNANO).

Funding

This work was supported by grants (2014/12891-0, 2014/01995-9, and 2014/15640-8) received from the São Paulo Research Foundation (FAPESP). INFABIC was co-funded by FAPESP (08/57906-3) and the National Council for Scientific and Technological Development (CNPq) (573913/2008-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaira Clemente.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clemente, Z., Silva, G.H., de Souza Nunes, M.C. et al. Exploring the mechanisms of graphene oxide behavioral and morphological changes in zebrafish. Environ Sci Pollut Res 26, 30508–30523 (2019). https://doi.org/10.1007/s11356-019-05870-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05870-z

Keywords

Navigation