Skip to main content
Log in

Removal of pharmaceuticals and personal care products using constructed wetlands: effective plant-bacteria synergism may enhance degradation efficiency

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Post-industrial era has witnessed significant advancements at unprecedented rates in the field of medicine and cosmetics, which has led to affluent use of pharmaceuticals and personal care products (PPCPs). However, this has exacerbated the influx of various pollutants in the environment affecting living organisms through multiple routes. Thousands of PPCPs of various classes—prescription and non-prescription drugs—are discharged directly into the environment. In this review, we have surveyed literature investigating plant-based remediation practices to remove PPCPs from the environment. Our specific aim is to highlight the importance of plant-bacteria interplay for sustainable remediation of PPCPs. The green technologies not only are successfully curbing organic pollutants but also have displayed certain limitations. For example, the presence of biologically active compounds within plant rhizosphere may affect plant growth and hence compromise the phytoremediation potential of constructed wetlands. To overcome these hindrances, combined use of plants and beneficial bacteria has been employed. The microbes (both rhizo- and endophytes) in this type of system not only degrade PPCPs directly but also accelerate plant growth by producing growth-promoting enzymes and hence remediation potential of constructed wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afzal M, Yousaf S, Reichenauer TGKM, Sessitsch A (2011) Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater 186:1568–1575

    Article  CAS  Google Scholar 

  • Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremediation 14:35–47

    Article  Google Scholar 

  • Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242. https://doi.org/10.1016/j.chemosphere.2014.06.078

    Article  CAS  Google Scholar 

  • Aherne GW, Hardcastle A, Nield A (1990) Cytotoxic drugs and the aquatic environment: estimation of bleomycin in river and water samples. J Pharm Pharmacol 42:741–742

    Article  CAS  Google Scholar 

  • Ahsan MT, Najam-ul-haq M, Idrees M, Ullah I, Afzal M (2017) Bacterial endophytes enhance phytostabilization in soils contaminated with uranium and lead. Int J Phytoremediation 19:937–946

    Article  CAS  Google Scholar 

  • Alavi P, Starcher MR, Zachow C, Müller H, Berg G (2013) Root-microbe systems: the effect and mode of interaction of stress protecting agent (SPA) Stenotrophomonas rhizophila DSM14405(T). Front Plant Sci 4:141. https://doi.org/10.3389/fpls.2013.00141

    Article  Google Scholar 

  • Almeida B, Kjeldal H, Lolas I, Knudsen AD, Carvalho G, Nielsen KL, Barreto Crespo MT, Stensballe A, Nielsen JL (2013) Quantitative proteomic analysis of ibuprofen-degrading Patulibacter sp. strain I11. Biodegradation 24:615–630. https://doi.org/10.1007/s10532-012-9610-5

    Article  CAS  Google Scholar 

  • Arslan M, Afzal M, Amin I, Iqbal S, Khan QM (2014) Nutrients can enhance the abundance and expression of alkane hydroxylase CYP153 gene in the rhizosphere of ryegrass planted in diesel-contaminated soil. PLoS One 9:e111208

    Article  CAS  Google Scholar 

  • Arslan M, Ullah I, Müller JA, Shahid N, Afzal M (2017a) Organic micropollutants in the environment: ecotoxicity potential and methods for remediation. In: Anjum NA, Ahmad I, Pereira ME, Duarte AC, Umar S, Khan NA (eds) Enhancing remediation of environmental pollutants—biological and non-biological approaches. Springer, New York

  • Arslan, M., Imran, A., Khan, Q. M., & Afzal, M. (2017b). Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environmental Science and Pollution Research, 24(5), 4322-4336. https://doi.org/10.1007/s11356-015-4935-3

  • Ashton D, Hilton M, Thomas KV (2004) Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci Total Environ 333:167–184

    Article  CAS  Google Scholar 

  • Ávila C, Pedescoll A, Matamoros V, Bayona JM, García J (2010) Capacity of a horizontal subsurface flow constructed wetland system for the removal of emerging pollutants: an injection experiment. Chemosphere 81:1137–1142. https://doi.org/10.1016/j.chemosphere.2010.08.006

    Article  CAS  Google Scholar 

  • Ávila C, Reyes C, Bayona JM, García J (2013) Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: influence of redox. Water Res 47:315–325. https://doi.org/10.1016/j.watres.2012.10.005

    Article  CAS  Google Scholar 

  • Ávila C, Nivala J, Olsson L, Kassa K, Headley T, Mueller RA, Bayona JM, García J (2014) Emerging organic contaminants in vertical subsurface flow constructed wetlands: influence of media size, loading frequency and use of active aeration. Sci Total Environ 494-495:211–217. https://doi.org/10.1016/j.scitotenv.2014.06.128

    Article  CAS  Google Scholar 

  • Ávila C, Bayona JM, Martín I, Salas JJ, García J (2015) Emerging organic contaminant removal in a full-scale hybrid constructed wetland system for wastewater treatment and reuse. Ecol Eng 80:108–116. https://doi.org/10.1016/j.ecoleng.2014.07.056

    Article  Google Scholar 

  • Bai Y, Zang C, Gu M, Gu C, Shao H, Guan Y, Wang X, Zhou X, Shan Y, Feng K (2017) Sewage sludge as an initial fertility driver for rapid improvement of mudflat salt-soils. Sci Total Environ 578:47–55

  • Balcom IN, Driscoll H, Vincent J, Leduc M (2016) Metagenomic analysis of an ecological wastewater treatment plant’s microbial communities and their potential to metabolize pharmaceuticals. F1000Res 5:1881. https://doi.org/10.12688/f1000research.9157.1

    Article  CAS  Google Scholar 

  • Bandara WM, Seneviratne G, Kulasooriya SA (2006) Interactions among endophytic bacteria and fungi: effects and potentials. J Biosci 31:645–650

    Article  CAS  Google Scholar 

  • Barone JJ, Roberts HR (1996) Caffeine consumption food and chemical toxicology: an international journal published for the British industrial. Biol Res Assoc 34:119–129

    CAS  Google Scholar 

  • Becerra-Castro C, Kidd PS, Rodríguez-Garrido B, Monterroso C, Santos-Ucha P, Prieto-Fernández Á (2013) Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using Cytisus striatus and bacterial inoculants in soils with distinct organic matter content. Environ Pollut 178:202–210

    Article  CAS  Google Scholar 

  • Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 93:2116–2123

    Article  CAS  Google Scholar 

  • Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–1532

    Article  CAS  Google Scholar 

  • Buerge II, Poiger T, Muller MD, Buser HR (2003) Caffeine, an anthropogenic marker for wastewater comtamination of surface waters. Environ Sci Technol 37:691–700

    Article  CAS  Google Scholar 

  • Bundschuh M, Hahn T, Gessner MO, Schulz R (2009) Antibiotics as a chemical stressor affecting an aquatic decomposer–detritivore system. Environ Toxicol Chem 28:197–203

    Article  CAS  Google Scholar 

  • Caldwell DJ, Mastrocco F, Margiotta-Casaluci L, Brooks BW (2014) An integrated approach for prioritizing pharmaceuticals found in the environment for risk assessment, monitoring and advanced research. Chemosphere 115:4–12

    Article  CAS  Google Scholar 

  • Carballa M, Omil F, Lema JM, Llompart Ḿ, Garcı́a-Jares C, Rodrı́guez I, Gómez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38:2918–2926

    Article  CAS  Google Scholar 

  • Carvalho PN, Basto MCP, Almeida CMR, Brix H (2014) A review of plant–pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands. Environ Sci Pollut Res 21:11729–11763

    Article  Google Scholar 

  • Chen Y, Rosazza JPN (1994) Microbial transformation of ibuprofen by a Nocardia species. Appl Environ Microbiol 60:1292–1296

    CAS  Google Scholar 

  • Chiron S, Minero C, Vione D (2006) Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters. Environ Sci Technol 40:5977–5983

    Article  CAS  Google Scholar 

  • Chopra S, Kumar D (2018) Pharmaceuticals and Personal Care Products (PPCPs) as Emerging Environmental Pollutants: Toxicity and Risk Assessment. In Advances in animal biotechnology and its applications. Springer, Singapore, pp 337–353

  • Cizmas L, Sharma VK, Gray CM, McDonald TJ (2015) Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk. Environ Chem Lett 13:381–394

    Article  CAS  Google Scholar 

  • Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194

    Article  CAS  Google Scholar 

  • Cleuvers M (2008) Chronic mixture toxicity of pharmaceuticals to Daphnia—the example of nonsteroidal anti-inflammatory drugs. In: Kümmerer K (ed) Pharmaceuticals in the environment: sources, fate, effects and risks. Springer Berlin Heidelberg, Berlin, pp 277–284

    Chapter  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Conkle JL, Gan J, Anderson MA (2012) Degradation and sorption of commonly detected PPCPs in wetland sediments under aerobic and anaerobic conditions. J Soils Sediments 12:1164–1173

    Article  CAS  Google Scholar 

  • Corcoran J, Winter MJ, Tyler CR (2010) Pharmaceuticals in the aquatic environment: a critical review of the evidence for health effects in fish. Crit Rev Toxicol 40:287–304

    Article  CAS  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938

    Article  CAS  Google Scholar 

  • David A, Pancharatna K (2009) Developmental anomalies induced by a non-selective COX inhibitor (ibuprofen) in zebrafish (Danio rerio). Environ Toxicol Pharmacol 27:390–395. https://doi.org/10.1016/j.etap.2009.01.002

    Article  CAS  Google Scholar 

  • Díaz-Cruz MS, Barceló D (2008) Trace organic chemicals contamination in ground water recharge. Chemosphere 72:333–342

    Article  CAS  Google Scholar 

  • Dodgen LK, Kelly WR, Panno SV, Taylor SJ, Armstrong DL, Wiles KN, Zhang Y, Zheng W (2017) Characterizing pharmaceutical, personal care product, and hormone contamination in a karst aquifer of southwestern Illinois, USA, using water quality and stream flow parameters. Sci Total Environ 578:281–289

  • Dordio AV, Belo M, Martins Teixeira D, Palace Carvalho AJ, Dias CM, Pico Y, Pinto AP (2011) Evaluation of carbamazepine uptake and metabolization by Typha spp., a plant with potential use in phytotreatment. Bioresour Technol 102:7827–7834. https://doi.org/10.1016/j.biortech.2011.06.050

    Article  CAS  Google Scholar 

  • Drury B, Scott J, Rosi-Marshall EJ, Kelly JJ (2013) Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities. Environ Sci Technol 47:8923–8930. https://doi.org/10.1021/es401919k

    Article  CAS  Google Scholar 

  • Ebele AJ, Abdallah MAE, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants 3(1):1–16

  • Ellis JB (2008) Assessing sources and impacts of priority PPCP compounds in urban receiving waters, 11th International Conference on Urban Drainage, Edinburgh, Scotland, pp 1–10

  • Esplugas M, Gonzalez O, Sans C (2013) Bacterial community characterization of a sequencing batch reactor treating pre-ozonized sulfamethoxazole in water. Environ Technol 34:1583–1591. https://doi.org/10.1080/09593330.2012.758669

    Article  CAS  Google Scholar 

  • Evgenidou EN, Konstantinou IK, Lambropoulou DA (2015) Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: a review. Sci Total Environ 505:905–926

  • Fatima K, Imran A, Khan QM, Afzal M (2015) Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil. Bull Environ Contam Toxicol 94:314–320

    Article  CAS  Google Scholar 

  • Fatima K, Imran A, Amin I, Khan QM, Afzal M (2016) Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil. Environ Sci Pollut Res 23:6188–6196

    Article  CAS  Google Scholar 

  • Feitosa-Felizzola J, Hanna K, Chiron S (2009) Adsorption and transformation of selected human-used macrolide antibacterial agents with iron(III) and manganese(IV) oxides. Environ Pollut 157:1317–1322. https://doi.org/10.1016/j.envpol.2008.11.048

    Article  CAS  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  • Fernandez-Fontaina E, Gomes IB, Aga DS, Omil F, Lema JM, Carballa M (2016) Biotransformation of pharmaceuticals under nitrification, nitratation and heterotrophic conditions. Sci Total Environ 541:1439–1447. https://doi.org/10.1016/j.scitotenv.2015.10.010

    Article  CAS  Google Scholar 

  • Ferreira AR, Ribeiro A, Couto N (2017) Remediation of pharmaceutical and personal care products (PPCPs) in constructed wetlands: applicability and new perspectives. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 5. Springer International Publishing, Cham, pp 277–292. https://doi.org/10.1007/978-3-319-52381-19

  • García-Galán MJ, González Blanco S, López Roldán R, Díaz-Cruz S, Barceló D (2012) Ecotoxicity evaluation and removal of sulfonamides and their acetylated metabolites during conventional wastewater treatment. Sci Total Environ 437:403–412

    Article  CAS  Google Scholar 

  • Garcia-Rodriguez A, Matamoros V, Fontas C, Salvado V (2014) The ability of biologically based wastewater treatment systems to remove emerging organic contaminants—a review. Environ Sci Pollut Res Int 21:11708–11728. https://doi.org/10.1007/s11356-013-2448-5

    Article  Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234. https://doi.org/10.1111/j.1574-6968.2009.01637.x

    Article  CAS  Google Scholar 

  • Ghattas A-K, Fischer F, Wick A, Ternes TA (2017) Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment. Water Res 116:268–295. https://doi.org/10.1016/j.watres.2017.02.001

    Article  CAS  Google Scholar 

  • Gilroy ÈAM, Balakrishnan VK, Solomon KR, Sverko E, Sibley PK (2012) Behaviour of pharmaceuticals in spiked lake sediments—effects and interactions with benthic invertebrates. Chemosphere 86:578–584

    Article  CAS  Google Scholar 

  • Haslmayr H-P, Meißner S, Langella F, Baumgarten A, Geletneky J (2014) Establishing best practice for microbially aided phytoremediation. Environ Sci Pollut Res 21:6765–6774

    Article  Google Scholar 

  • He Y, Langenhoff AAM, Sutton NB, Rijnaarts HHM, Blokland MH, Chen F, Huber C, Schröder P (2017) Metabolism of ibuprofen by Phragmites australis: uptake and phytodegradation. Environ Sci Technol 51:4576–4584. https://doi.org/10.1021/acs.est.7b00458

    Article  CAS  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17

    Article  CAS  Google Scholar 

  • Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69:334–342

    Article  CAS  Google Scholar 

  • Hignite C, Azarnoff DL (1977) Drugs and drug metabolites as environmental contaminants: chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Life Sci 20:337–341

    Article  CAS  Google Scholar 

  • Hijosa-Valsero M, Matamoros V, Sidrach-Cardona R, Martín-Villacorta J, Bécares E, Bayona JM (2010) Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water Res 44:3669–3678. https://doi.org/10.1016/j.watres.2010.04.022

    Article  CAS  Google Scholar 

  • Ho YN, Mathew DC, Hsiao SC, Shih CH, Chien MF, Chiang HM, Huang CC (2012) Selection and application of endophytic bacterium Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollutants. J Hazard Mater 219-220:43–49. https://doi.org/10.1016/j.jhazmat.2012.03.035

    Article  CAS  Google Scholar 

  • Hong Y, Liao D, Hu A, Wang H, Chen J, Khan S, Su J, Li H (2015) Diversity of endophytic and rhizoplane bacterial communities associated with exotic Spartina alterniflora and native mangrove using Illumina amplicon sequencing. Can J Microbiol 61:723–733. https://doi.org/10.1139/cjm-2015-0079

    Article  CAS  Google Scholar 

  • Hussain Z, Arslan M, Malik MH, Mohsin M, Iqbal S, Afzal M (2018a) Integrated perspectives on the use of bacterial endophytes in horizontal flow constructed wetlands for the treatment of liquid textile effluent: phytoremediation advances in the field. J Environ Manag 224:387–395

    Article  CAS  Google Scholar 

  • Hussain Z, Arslan M, Malik MH, Mohsin M, Iqbal S, Afzal M (2018b) Treatment of the textile industry effluent in a pilot-scale vertical flow constructed wetland system augmented with bacterial endophytes. Sci Total Environ 645:966–973

    Article  CAS  Google Scholar 

  • Ijaz A, Shabir G, Khan QM, Afzal M (2015) Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands. Ecol Eng 84:58–66

    Article  Google Scholar 

  • Ijaz A, Imran A, Anwar-ul-Haq M, Khan QM, Afzal M (2016a) Phytoremediation: recent advances in plant-endophytic synergistic interactions. Plant Soil 405:179–195

    Article  CAS  Google Scholar 

  • Ijaz A, Iqbal Z, Afzal M (2016b) Remediation of sewage and industrial effluent using bacterially-assisted floating treatment wetlands vegetated with Typha domingensis. Water Sci Technol 74:2192–2201

    Article  CAS  Google Scholar 

  • Inoue Y, Hata T, Kawai S, Okamura H, Nishida T (2010) Elimination and detoxification of triclosan by manganese peroxidase from white rot fungus. J Hazard Mater 180:764–767

    Article  CAS  Google Scholar 

  • Irwin LK, Gray S, Oberdörster E (2001) Vitellogenin induction in painted turtle, Chrysemys picta, as a biomarker of exposure to environmental levels of estradiol. Aquat Toxicol 55:49–60

    Article  CAS  Google Scholar 

  • Isidori M, Lavorgna M, Nardelli A, Parrella A, Previtera L, Rubino M (2005) Ecotoxicity of naproxen and its phototransformation products. Sci Total Environ 348:93–101

    Article  CAS  Google Scholar 

  • Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13

    Article  CAS  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332

    Article  CAS  Google Scholar 

  • Khan Z, Roman D, Kintz T, delas Alas M, Yap R, Doty S (2014) Degradation, Phytoprotection and phytoremediation of Phenanthrene by endophyte Pseudomonas putida, PD1. Environ Sci Technol 48:12221–12228

    Article  CAS  Google Scholar 

  • Khanal SK, Xie B, Thompson ML, Sung S, Ong S-K, van Leeuwen J (2006) Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environ Sci Technol 40:6537–6546

    Article  CAS  Google Scholar 

  • Khoudi H, Maatar Y, Brini F, Fourati A, Ammar N, Masmoudi K (2013) Phytoremediation potential of Arabidopsis thaliana, expressing ectopically a vacuolar proton pump, for the industrial waste phosphogypsum. Environ Sci Pollut Res 20:270–280

    Article  CAS  Google Scholar 

  • Kim H, Nishiyama M, Kunito T, Senoo K, Kawahara K, Murakami K, Oyaizu H (1998) High population of Sphingomonas species on plant surface. J Appl Microbiol 85:731–736. https://doi.org/10.1111/j.1365-2672.1998.00586.x

    Article  Google Scholar 

  • Kim Y-M, Murugesan K, Schmidt S, Bokare V, Jeon J-R, Kim E-J, Chang YS (2011) Triclosan susceptibility and co-metabolism—a comparison for three aerobic pollutant-degrading bacteria. Bioresour Technol 102:2206–2212. https://doi.org/10.1016/j.biortech.2010.10.009

    Article  CAS  Google Scholar 

  • Kinney CA, Furlong ET, Kolpin DW, Burkhardt MR, Zaugg SD, Werner SL, Bossio JP, Benotti MJ (2008) Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure. Environ Sci Technol 42(6):1863–1870

  • Kostich MS, Batt AL, Lazorchak JM (2014) Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation. Environ Pollut 184:354–359

    Article  CAS  Google Scholar 

  • Krah D, Ghattas A-K, Wick A, Bröder K, Ternes TA (2016) Micropollutant degradation via extracted native enzymes from activated sludge. Water Res 95:348–360. https://doi.org/10.1016/j.watres.2016.03.037

    Article  CAS  Google Scholar 

  • Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use–present knowledge and future challenges. J Environ Manag 90:2354–2366

    Article  CAS  Google Scholar 

  • La Farre M, Pérez S, Kantiani L, Barceló D (2008) Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal Chem 27:991–1007

    Article  CAS  Google Scholar 

  • Lapworth D, Baran N, Stuart M, Ward R (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303

    Article  CAS  Google Scholar 

  • Lee DG, Cho KC, Chu KH (2014) Identification of triclosan-degrading bacteria in a triclosan enrichment culture using stable isotope probing. Biodegradation 25:55–65. https://doi.org/10.1007/s10532-013-9640-7

    Article  CAS  Google Scholar 

  • Leys NM, Ryngaert A, Bastiaens L, Verstraete W, Top EM, Springael D (2004) Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70:1944–1955

    Article  CAS  Google Scholar 

  • Li A, Cai R, Cui D, Qiu T, Pang C, Yang J, Ma F, Ren N (2013) Characterization and biodegradation kinetics of a new cold-adapted carbamazepine-degrading bacterium, Pseudomonas sp. CBZ-4. J Environ Sci (China) 25:2281–2290

    Article  CAS  Google Scholar 

  • Li Y, Zhu G, Ng WJ, Tan SK (2014) A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: design, performance and mechanism. Sci Total Environ 468-469:908–932

    Article  CAS  Google Scholar 

  • Li Y, Wu B, Zhu G, Liu Y, Ng WJ, Appan A, Tan SK (2016) High-throughput pyrosequencing analysis of bacteria relevant to cometabolic and metabolic degradation of ibuprofen in horizontal subsurface flow constructed wetlands. Sci Total Environ 562:604–613. https://doi.org/10.1016/j.scitotenv.2016.04.020

    Article  CAS  Google Scholar 

  • Lishman L, Smyth SA, Sarafin K, Kleywegt S, Toito J, Peart T, Lee B, Servos M, Beland M, Seto P (2006) Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Sci Total Environ 367:544–558

    Article  CAS  Google Scholar 

  • Liu J-L, Wong M-H (2013) Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 59:208–224

    Article  CAS  Google Scholar 

  • Liu S, Ying G-G, Zhao J-L, Chen F, Yang B, Zhou L-J, H-j L (2011) Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography–electrospray ionization tandem mass spectrometry. J Chromatogr A 1218:1367–1378

    Article  CAS  Google Scholar 

  • Liu J, Liu S, Sun K, Sheng Y, Gu Y, Gao Y (2014) Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination. PLoS One 9:e108249. https://doi.org/10.1371/journal.pone.0108249

    Article  CAS  Google Scholar 

  • Liu J, Wang J, Zhao C, Hay AG, Xie H (2015) Triclosan removal in wetlands constructed with different aquatic plants

  • Loraine GA, Pettigrove ME (2006) Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California. Environ Sci Technol 40:687–695

    Article  CAS  Google Scholar 

  • Lu Y, Yuan T, Yun SH, Wang W, Kannan K (2011) Occurrence of synthetic musks in indoor dust from China and implications for human exposure. Arch Environ Contam Toxicol 60:182–189

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MN, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  Google Scholar 

  • Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I, Lugtenberg B (2011) Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb Biotechnol 4:523–532

    Article  CAS  Google Scholar 

  • Marchlewicz A, Guzik U, Hupert-Kocurek K, Nowak A, Wilczyńska S, Wojcieszyńska D (2017) Toxicity and biodegradation of ibuprofen by Bacillus thuringiensis B1(2015b). Environ Sci Pollut Res 24:7572–7584. https://doi.org/10.1007/s11356-017-8372-3

    Article  CAS  Google Scholar 

  • Marsolek M, Kirisits M, Rittmann B (2007) Biodegradation of 2,4,5-trichlorophenol by aerobic microbial communities: biorecalcitrance, inhibition, and adaptation. Biodegradation 18:351–358. https://doi.org/10.1007/s10532-006-9069-3

  • Matamoros V, Bayona JM (2006) Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environ Sci Technol 40:5811–5816. https://doi.org/10.1021/es0607741

    Article  CAS  Google Scholar 

  • Matamoros V, Arias C, Brix H, Bayona JM (2007) Removal of pharmaceuticals and personal care products (PPCPs) from urban wastewater in a pilot vertical flow constructed wetland and a sand filter. Environ Sci Technol 41:8171–8177

    Article  CAS  Google Scholar 

  • McAvoy DC, Schatowitz B, Jacob M, Hauk A, Eckhoff WS (2002) Measurement of triclosan in wastewater treatment systems. Environ Toxicol Chem 21:1323–1329. https://doi.org/10.1002/etc.5620210701

    Article  CAS  Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metals from soils. In Phytoremediation. Springer, Berlin, pp 97–123

  • Mohanty SK, Yu CL, Gopishetty S, Subramanian M (2014) Validation of caffeine dehydrogenase from Pseudomonas sp. strain CBB1 as a suitable enzyme for a rapid caffeine detection and potential diagnostic test. J Agric Food Chem 62:7939–7946

    Article  CAS  Google Scholar 

  • Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35:803–814

    Article  CAS  Google Scholar 

  • Munz NA, Burdon FJ, de Zwart D, Junghans M, Melo L, Reyes M, Schönenberger U, Singer HP, Spycher B, Hollender J, Stamm C (2017) Pesticides drive risk of micropollutants in wastewater-impacted streams during low flow conditions. Water Res 110:366–377

    Article  CAS  Google Scholar 

  • Münze R, Hannemann C, Orlinskiy P, Gunold R, Paschke A, Foit K, Becker J, Kaske O, Paulsson E, Peterson M, Jernstedt H, Kreuger J, Schüürmann G, Liess M (2017) Pesticides from wastewater treatment plant effluents affect invertebrate communities. Sci Total Environ 599-600:387–399

    Article  CAS  Google Scholar 

  • Murdoch RW, Hay AG (2013) Genetic and chemical characterization of ibuprofen degradation by Sphingomonas Ibu-2. Microbiology 159:621–632. https://doi.org/10.1099/mic.0.062273-0

    Article  CAS  Google Scholar 

  • Murdoch RW, Hay AG (2015) The biotransformation of ibuprofen to trihydroxyibuprofen in activated sludge and by Variovorax Ibu-1. Biodegradation 26:105–113. https://doi.org/10.1007/s10532-015-9719-4

    Article  CAS  Google Scholar 

  • Murugesan K, Chang YY, Kim YM, Jeon JR, Kim EJ, Chang YS (2010) Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Res 44:298–308

    Article  CAS  Google Scholar 

  • Nakajima Y (1999) Mechanisms of bacterial resistance to macrolide antibiotics. J Infect Chemother 5:61–74

    Article  CAS  Google Scholar 

  • Näslund J, Hedman JE, Agestrand C (2008) Effects of the antibiotic ciprofloxacin on the bacterial community structure and degradation of pyrene in marine sediment. Aquat Toxicol 90:223–227

    Article  CAS  Google Scholar 

  • Nikolaou A, Meric S, Fatta D (2007) Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal Bioanal Chem 387:1225–1234

    Article  CAS  Google Scholar 

  • Nunes FV, de Melo IS (2006) Isolation and characterization of endophytic bacteria of coffee plants and their potential in caffeine degradation. WIT Trans Biomed Health 10:293–297

    Article  CAS  Google Scholar 

  • Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Iqbal Chaudhry MJ, Arshad M, Mahmood S, Ali A, Ahmed Khan A (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427:630–633

    Article  CAS  Google Scholar 

  • Onesios-Barry KM, Berry D, Proescher JB, Sivakumar IA, Bouwer EJ (2014) Removal of pharmaceuticals and personal care products during water recycling: microbial community structure and effects of substrate concentration. Appl Environ Microbiol 80(8):2440–2450

  • Painter MM, Buerkley MA, Julius ML, Vajda AM, Norris DO, Barber LB, Furlong ET, Schultz MM, Schoenfuss HL (2009) Antidepressants at environmentally relevant concentrations affect predator avoidance behavior of larval fathead minnows (Pimephales promelas). Environ Toxicol Chem 28:2677–2684

    Article  CAS  Google Scholar 

  • Pal A, Gin KY-H, Lin AY-C, Reinhard M (2010) Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408:6062–6069

    Article  CAS  Google Scholar 

  • Park N, Vanderford BJ, Snyder SA, Sarp S, Kim SD, Cho J (2009) Effective controls of micropollutants included in wastewater effluent using constructed wetlands under anoxic condition. Ecol Eng 35:418–423. https://doi.org/10.1016/j.ecoleng.2008.10.004

    Article  Google Scholar 

  • Pedersen JA, Soliman M, Suffet IH (2005) Human pharmaceuticals, hormones, and personal care product ingredients in runoff from agricultural fields irrigated with treated wastewater. J Agric Food Chem 53:1625–1632

    Article  CAS  Google Scholar 

  • Petryna A, Kleinman A (2006) The pharmaceutical nexus global pharmaceuticals: ethics, markets, practices, p 1–32

  • Pivetz BE (2001) Ground water issue: phytoremediation of contaminated soil and ground water at hazardous waste sites

  • Pomati F, Castiglioni S, Zuccato E, Fanelli R, Vigetti D, Rossetti C, Calamari D (2006) Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells. Environ Sci Technol 40:2442–2447

    Article  CAS  Google Scholar 

  • Pruden A, Pei R, Storteboom H, Carlson KH (2006) Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol 40:7445–7450

    Article  CAS  Google Scholar 

  • Quintana JB, Weiss S, Reemtsma T (2005) Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res 39(12):2654–2664

  • Rehman K, Imran A, Amin I, Afzal M (2018) Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. J Hazard Mater 349:242–251

    Article  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  Google Scholar 

  • Richardson ML, Bowron JM (1985) The fate of pharmaceutical chemicals in the aquatic environment. J Pharm Pharmacol 37:1–12

    Article  CAS  Google Scholar 

  • Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, Dow JM (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525. https://doi.org/10.1038/nrmicro2163

    Article  CAS  Google Scholar 

  • Samanta SK, Chakraborti AK, Jain RK (1999) Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol 53:98–107

    Article  CAS  Google Scholar 

  • Santos J, Aparicio I, Alonso E (2007) Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville City (Spain). Environ Int 33:596–601

    Article  CAS  Google Scholar 

  • Sauvêtre A, Schröder P (2015) Uptake of carbamazepine by rhizomes and endophytic bacteria of Phragmites australis. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00083

  • Sauvêtre A, May R, Harpaintner R, Poschenrieder C, Schröder P (2018) Metabolism of carbamazepine in plant roots and endophytic rhizobacteria isolated from Phragmites australis. J Hazard Mater 342:85–95. https://doi.org/10.1016/j.jhazmat.2017.08.006

    Article  CAS  Google Scholar 

  • Scudellari M (2015) Humans have spiked ecosystems with a flood of active pharmaceuticals. Thedrugs are feminizing male fish, confusing birds, and worrying scientists. The Scientist (Magazine)

  • Sgroy V, Cassan F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381

    Article  CAS  Google Scholar 

  • Shahid MJ, Arslan M, Ali S, Siddique M, Afzal M (2018) Floating wetlands: an innovative tool for wastewater treatment. CLEAN—Soil Air Water. https://doi.org/10.1002/clen.201800120

  • Shehzadi M, Afzal M, Khan MU, Islam E, Mobin A, Anwar S, Khan QM (2014) Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Res 58:152–159

    Article  CAS  Google Scholar 

  • Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475

    Article  CAS  Google Scholar 

  • Singer H, Müller S, Tixier C, Pillonel L (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol 36:4998–5004. https://doi.org/10.1021/es025750i

    Article  CAS  Google Scholar 

  • Singh RP, Jha PN (2017) The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.01945

  • Sousa AATC, Figueiredo CC (2016) Sewage sludge biochar: effects on soil fertility and growth of radish. Biol Agric Hortic 32(2):127–138

  • Summers RM, Mohanty SK, Gopishetty S, Subramanian M (2015) Genetic characterization of caffeine degradation by bacteria and its potential applications. Microbiol Biotechnol 8:369–378. https://doi.org/10.1111/1751-7915.12262

    Article  CAS  Google Scholar 

  • Swan Gerry E, Cuthbert R, Quevedo M, Green Rhys E, Pain Deborah J, Bartels P, Cunningham Andrew A, Duncan N, Meharg Andrew A, Lindsay Oaks J, Parry-Jones J, Shultz S, Taggart Mark A, Verdoorn G, Wolter K (2006) Toxicity of diclofenac to Gyps vultures. Biol Lett 2:279–282

    Article  CAS  Google Scholar 

  • Tabata A, Kashiwada S, Ohnishi Y, Ishikawa H, Miyamoto N, Itoh M, Magara Y (2001) Estrogenic influences of estradiol-17b, p-nonylphenol and bis-phenol-A on Japanese Medaka (Oryzias latipes) at detected environmental concentrations. Water Sci Technol 43:109–116

    Article  CAS  Google Scholar 

  • Taggart MA, Cuthbert R, Das D, Sashikumar C, Pain DJ, Green RE, Feltrer Y, Shultz S, Cunningham AA, Meharg AA (2007) Diclofenac disposition in Indian cow and goat with reference to Gyps vulture population declines. Environ Pollut 147:60–65

    Article  CAS  Google Scholar 

  • Tai Y, Tam NFY, Dai Y, Yang Y, Lin J, Tao R, Yang Y, Wang J, Wang R, Huang W, Xu X (2017) Assessment of rhizosphere processes for removing water-borne macrolide antibiotics in constructed wetlands. Plant Soil 419:489–502. https://doi.org/10.1007/s11104-017-3359-x

    Article  CAS  Google Scholar 

  • Tara N, Iqbal M, Khan QM, Afzal M (2018) Bioaugmentation of floating treatment wetlands for the remediation of textile effluent. Water Environ J 33:124–134

    Article  CAS  Google Scholar 

  • Tara N, Arslan M, Hussain Z, Iqbal M, Khan QM, Afzal M (2019) On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. J Clean Prod 217:541–548

    Article  CAS  Google Scholar 

  • Taylor D, Senac T (2014) Human pharmaceutical products in the environment—the “problem” in perspective. Chemosphere 115:95–99

    Article  CAS  Google Scholar 

  • Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36:3855–3863

    Article  CAS  Google Scholar 

  • Ternes TA, Herrmann N, Bonerz M, Knacker T, Siegrist H, Joss A (2004) A rapid method to measure the solid–water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Res 38:4075–4084

    Article  CAS  Google Scholar 

  • Tian H, Ma YJ, Li WY, Wang JW (2018) Efficient degradation of triclosan by an endophytic fungus Penicillium oxalicum B4. Environ Sci Pollut Res 25:8963–8975. https://doi.org/10.1007/s11356-017-1186-5

    Article  CAS  Google Scholar 

  • Toro-Vélez AF, Madera-Parra CA, Peña-Varón MR, Lee WY, Bezares- Cruz JC, Walker WS, Cárdenas-Henao H, Quesada-Calderón S, García-Hernández H, Lens PNL (2016) BPA and NP removal from municipal wastewater by tropical horizontal subsurface constructed wetlands. Sci Total Environ 542:93–101. https://doi.org/10.1016/j.scitotenv.2015.09.154

    Article  CAS  Google Scholar 

  • Trautwein C, Berset J-D, Wolschke H, Kümmerer K (2014) Occurrence of the antidiabetic drug metformin and its ultimate transformation product guanylurea in several compartments of the aquatic cycle. Environ Int 70:203–212

    Article  CAS  Google Scholar 

  • Urase T, Kikuta T (2005) Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process. Water Res 39:1289–1300

    Article  CAS  Google Scholar 

  • Urase T, Kagawa C, Kikuta T (2005) Factors affecting removal of pharmaceutical substances and estrogens in membrane separation bioreactors. Desalination 178:107–113

    Article  CAS  Google Scholar 

  • Vasskog T, Anderssen T, Pedersen-Bjergaard S, Kallenborn R, Jensen E (2008) Occurrence of selective serotonin reuptake inhibitors in sewage and receiving waters at Spitsbergen and in Norway. J Chromatogr A 1185:194–205

    Article  CAS  Google Scholar 

  • Verhoeven JT, Meuleman AF (1999) Wetlands for wastewater treatment: opportunities and limitations. Ecol Eng 12(1-2):5–12

  • Verlicchi P, Zambello E (2014) How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review. Sci Total Environ 470-471:1281–1306

    Article  CAS  Google Scholar 

  • Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Sci Total Environ 429:123–155

    Article  CAS  Google Scholar 

  • Vymazal J (2011) Constructed wetlands for wastewater treatment: five decades of experience. Environ Sci Technol 45:61–69. https://doi.org/10.1021/es101403q

    Article  CAS  Google Scholar 

  • Wang L, Liao C, Liu F, Wu Q, Guo Y, Moon H-B, Nakata H, Kannan K (2012) Occurrence and human exposure of p-hydroxybenzoic acid esters (parabens), bisphenol a diglycidyl ether (BADGE), and their hydrolysis products in indoor dust from the United States and three east Asian countries. Environ Sci Technol 46:11584–11593

    Article  CAS  Google Scholar 

  • Wang L, Peng Y, Nie X, Pan B, Ku P, Bao S (2016) Gene response of CYP360A, CYP314, and GST and whole-organism changes in Daphnia magna exposed to ibuprofen comparative biochemistry and physiology. Comp Biochem Physiol C Toxicol Pharmacol 179:49–56. https://doi.org/10.1016/j.cbpc.2015.08.010

    Article  CAS  Google Scholar 

  • Wei S et al (2015) Sphingomonas hengshuiensis sp. nov., isolated from lake wetland. Int J Syst Evol Microbiol 65:4644–4649. https://doi.org/10.1099/ijsem.0.000626

    Article  CAS  Google Scholar 

  • Weigel S, Berger U, Jensen E, Kallenborn R, Thoresen H, Hühnerfuss H (2004) Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromsø/Norway with emphasis on ibuprofen and its metabolites. Chemosphere 56(6):583–592

    Article  CAS  Google Scholar 

  • Wilson CJ, Brain RA, Sanderson H, Johnson DJ, Bestari KT, Sibley PK, Solomon KR (2004) Structural and functional responses of plankton to a mixture of four tetracyclines in aquatic microcosms. Environ Sci Technol 38:6430–6439

    Article  CAS  Google Scholar 

  • Wu H, Zhang J, Ngo HH, Guo W, Hu Z, Liang S, Fan J, Liu H (2015) A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour Technol 175:594–601

    Article  CAS  Google Scholar 

  • Xu N, Johnson AC, Jürgens Llewellyn MDNR, Hankins NP, Darton RC (2009) Estrogen concentration affects its biodegradation rate in activated sludge. Environ Toxicol Chem S28:2263–2270

  • Yan Q, Xu Y, Yu Y, Zhu ZW, Feng G (2018) Effects of pharmaceuticals on microbial communities and activity of soil enzymes in mesocosm-scale constructed wetlands. Chemosphere 212:245–253

  • Yang Y, Ok YS, Kim KH, Kwon EE, Tsang YF (2017) Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Sci Total Environ 596:303–320

  • Ying G-G, Yu X-Y, Kookana RS (2007) Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environ Pollut 150:300–305. https://doi.org/10.1016/j.envpol.2007.02.013

    Article  CAS  Google Scholar 

  • Yoshida N, Ye L, Baba D, Katayama A (2009) A novel Dehalobacter species is involved in extensive 4,5,6,7-tetrachlorophthalide dechlorination. Appl Environ Microbiol 75:2400–2405. https://doi.org/10.1128/aem.02112-08

    Article  CAS  Google Scholar 

  • Yu CL, Louie TM, Summers R, Kale Y, Gopishetty S, Subramanian M (2009) Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5. J Bacteriol 191:4624–4632

    Article  CAS  Google Scholar 

  • Yucuis RA, Stanier CO, Hornbuckle KC (2013) Cyclic siloxanes in air, including identification of high levels in Chicago and distinct diurnal variation. Chemosphere 92:905–910

    Article  CAS  Google Scholar 

  • Zha J, Sun L, Zhou Y, Spear PA, Ma M, Wang Z (2008) Assessment of 17α-ethinylestradiol effects and underlying mechanisms in a continuous, multigeneration exposure of the Chinese rare minnow (Gobiocypris rarus). Toxicol Appl Pharmacol 226:298–308

    Article  CAS  Google Scholar 

  • Zhai J, Rahaman MH, Ji J, Luo Z, Wang Q, Xiao H, Wang K (2016) Plant uptake of diclofenac in a mesocosm-scale free water surface constructed wetland by Cyperus alternifolius. Water Sci Technol 73:3008–3016

    Article  CAS  Google Scholar 

  • Zhang P, Sheng G, Feng Y, Miller DM (2006) Predominance of char sorption over substrate concentration and soil pH in influencing biodegradation of benzonitrile. Biodegradation 17:1–8

  • Zhang DQ, Hua T, Gersberg RM, Zhu J, Ng WJ, Tan SK (2012) Fate of diclofenac in wetland mesocosms planted with Scirpus validus. Ecol Eng 49:59–64. https://doi.org/10.1016/j.ecoleng.2012.08.018

    Article  Google Scholar 

  • Zhang DQ, Hua T, Gersberg RM, Zhu J, Ng WJ, Tan SK (2013) Carbamazepine and naproxen: fate in wetland mesocosms planted with Scirpus validus. Chemosphere 91:14–21. https://doi.org/10.1016/j.chemosphere.2012.11.018

    Article  CAS  Google Scholar 

  • Zhang DQ, Jinadasa KB, Gersberg RM, Liu Y, Ng WJ, Tan SK (2014) Application of constructed wetlands for wastewater treatment in developing countries—a review of recent developments (2000–2013). J Environ Manag 141:116–131. https://doi.org/10.1016/j.jenvman.2014.03.015

    Article  CAS  Google Scholar 

  • Zhang Y, Lv T, Carvalho PN, Arias CA, Chen Z, Brix H (2016) Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation. Environ Sci Pollut Res 23:2890–2898. https://doi.org/10.1007/s11356-015-5552-x

    Article  CAS  Google Scholar 

  • Zhang Y, Lv T, Carvalho PN, Zhang L, Arias CA, Chen Z, Brix H (2017) Ibuprofen and iohexol removal in saturated constructed wetland mesocosms. Ecol Eng 98:394–402. https://doi.org/10.1016/j.ecoleng.2016.05.077

    Article  Google Scholar 

  • Zhang X, Jing R, Feng X, Dai Y, Tao R, Vymazal J, Cai N, Yang Y (2018) Removal of acidic pharmaceuticals by small-scale constructed wetlands using different design configurations. Sci Total Environ 639:640–647

  • Zhao C, Xie HJ, Xu J, Xu X, Zhang J, Hu Z, Liu C, Liang S, Wang Q, Wang J (2015) Bacterial community variation and microbial mechanism of triclosan (TCS) removal by constructed wetlands with different types of plants. Sci Total Environ 505:633–639. https://doi.org/10.1016/j.scitotenv.2014.10.053

    Article  CAS  Google Scholar 

  • Zhu X, Ni X, Waigi MG, Liu J, Sun K, Gao Y (2016) Biodegradation of mixed PAHs by PAH-degrading endophytic bacteria. Int J Environ Res Public Health 13. https://doi.org/10.3390/ijerph13080805

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Phuong Minh Nguyen or Muhammad Arslan.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, P.M., Afzal, M., Ullah, I. et al. Removal of pharmaceuticals and personal care products using constructed wetlands: effective plant-bacteria synergism may enhance degradation efficiency. Environ Sci Pollut Res 26, 21109–21126 (2019). https://doi.org/10.1007/s11356-019-05320-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05320-w

Keywords

Navigation