Skip to main content
Log in

Immobilization of hexavalent chromium in cement mortar: leaching properties and microstructures

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Stabilization and solidification (s/s) of heavy metals by cementitious materials are one of the effective methods in hazardous waste management. In cement alkaline environment, Cr(VI) compounds appear in the form of chromate anion (CrO4−2), which is highly soluble; it makes the implication of the s/s method challenging. Therefore, it is important to study the amount of chromium leaching from cementitious materials. The effects of Cr(VI) concentration and water-to-cement (w/c) ratio on the level of leaching of chromium from cement mortar (CM) were investigated in this study. Results indicated w/c not significantly affect the leaching of chromium in the age of 28-day but in the 90-day-old samples indicated a reduction in leaching of chromium from mortar with increasing w/c. Results from toxicity characteristic leaching procedure (TCLP) tests indicated that the efficiency of Cr(VI) stabilization was reduced with greater chromium content but was enhanced with increased w/c. In detail, results showed that only about 0.21% and 0.26% cement weight in TCLP and tank test of Cr(VI) was stabilized in CM, respectively. The results of X-ray diffraction (XRD) and scanning electron microscope (SEM/EDS) tests indicated that increasing the Cr(VI) content leads to changes in the formation of the cement main phases and microstructure of CM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ASTM C305 (2014) Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. ASTM International, West Conshohocken. www.astm.org

  • ASTM C778 (2013) Standard Specification for Standard Sand. ASTM International, West Conshohocken. www.astm.org

  • Batchelor B (2006) Overview of waste stabilization with cement. Waste Manag 26:689–698

    Article  CAS  Google Scholar 

  • Becquer T, irquantin C, Sicot M, Boudot JP (2003) Chromium availability in ultramafic soils from New Caledonia. Sci Total Environ 301:251–261

    Article  CAS  Google Scholar 

  • Belebchouchea CH, Moussaceba K, Aït-Mokhtarb A (2015) Evaluation of the encapsulation of nickel, chromium and lead-rich wastes in cement matrices by TCLP test. Eur J Environ Civ Eng 20:711–724

    Article  Google Scholar 

  • Bie R, Chen P, Song X, Ji X (2016) Characteristics of municipal solid waste incineration fly ash with cement solidification treatment. J Energy Inst 89:704–712

    Article  CAS  Google Scholar 

  • Building materials decree (soil and surface water protection) (1995) bull acts, orders decrees Kingdom of the Netherlands (Staatsblad)

  • CEN/TS 15863 (2012) Characterization of waste leaching behaviour test for basic characterisation dynamic monolithic leaching test with periodic leachant renewal under fixed test conditions

  • Chen QY, Tyrer M, Hills CD, Yang XM, Carey P (2009) Immobilisation of heavy metal in cement-based solidification/stabilisation: a review. Waste Manag 29:390–403

    Article  CAS  Google Scholar 

  • Cheryl E, Amal HR, Beydoun D, Scott JA, Low G (2004) Implications of the structure of cementitious wastes containing Pb(II), Cd(II), As(V), and Cr(VI) on the leaching of metals. Cem Concr Res 34:1093–1102

    Article  CAS  Google Scholar 

  • Dayan AD, Paine AJ (2001) Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol 20:439–451

    Article  CAS  Google Scholar 

  • EA NEN 7375 (2004) Determination of leaching of inorganic components with the diffusion test -the tank test. In: Netherlands normalisation institute standard

    Google Scholar 

  • El-Eswed BI, Yousef RI, Alshaaer M, Hamadneh I, Al-Gharabli SI, Khalili F (2015) Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers. Int J Miner Process 137:34–42

    Article  CAS  Google Scholar 

  • EPA (2012) Hazardous waste treatment, storage, and disposal facilities (TSDF) regulations. 1/13/2012 EPA 530-R-11-006 Version 1

  • EPA 1315 (2013) Mass Transfer Rates of Constituents In Monolithic or Compacted Granular Materials Using A Semi-Dynamic Tank Leaching Procedure

  • Erdem E, Güngörmüs H, Kılınçarslan R (2016) The investigation of some properties of cement and removal of water soluble toxic chromium(VI) ion in cement by means of different reducing agents. Constr Build Mater 124:626–630

    Article  CAS  Google Scholar 

  • Garrabrants AC, Thorneloe-Howard SA (2010) Background information for the leaching environmental assessment framework (LEAF) test methods, National Risk Management Research Laboratory, US Environmental Protection Agency, Office of Research and Development

  • Goto S, Roy D (1981) Diffusion of ions through hardened cement pastes. Cem Concr Res 11:751–757

    Article  CAS  Google Scholar 

  • Gougar MLD, Scheetz BE, Roy DM (1996) Ettringite and C-S-H Portland cement phases for waste ion immobilization:a review. Waste Manag 16:295–303

    Article  CAS  Google Scholar 

  • Guertin J, Avakian CP, Jacobs JA (2004) written by Independent Environmental Technical Evaluation Group (IETEG), Chromium(VI) Handbook, CRC Press

  • Guo Q (1997) Increases of lead and chromium in drinking water from using cement-mortar-lined pipes: initial modeling and assessment. J Hazard Mater 56:18l–213l

  • Guo B, Liu B, Yang J, Zhang S (2017) The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: a review. J Environ Manag 193:410–422

    Article  CAS  Google Scholar 

  • Hodula J, Dohnálková B, Drochytka R (2015) Solidification of hazardous waste with the aim of material utilization of solidification products. Procedia Eng 108:639–646

    Article  Google Scholar 

  • Huang X, Zhuang RL, Muhammad F, Yu L, Shiau YC, Li D (2017) Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials. Chemosphere 168:300–308

    Article  CAS  Google Scholar 

  • Husnain A, Qazi IA, Khaliq W, Arshad M (2016) Immobilization in cement mortar of chromium removed from water using titania nanoparticles. J Environ Manag 172:10–17

    Article  CAS  Google Scholar 

  • Kavouras P, Pantazopoulou E, Varitis S, Vourlias G, Chrissafis K, Dimitrakopulos GP, Mitrakas M, Zouboulis AI, Karakostas T, Xenidis A (2015) Incineration of tannery sludge under oxic and anoxic conditions: study of chromium speciation. J Hazard Mater 283:672–679

    Article  CAS  Google Scholar 

  • Kindness A, Macias A, Glasser FP (1994) Immobilization of chromium in cement matrices. Waste Manag 14:3–11

    Article  CAS  Google Scholar 

  • Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  Google Scholar 

  • Lide DR (2003) CRC handbook of Chmistry and physics. CRC Press, New York

    Google Scholar 

  • Macias A, Kindness A, Glasser FP (1997) Impact of carbonation on the immobilization potential of cemented wastes: chromium. Cem Concr Res 27:215–225

    Article  CAS  Google Scholar 

  • Meena AH, Kaplan DI, Powell BA, Arai Y (2015) Chemical stabilization of chromate in blast furnace slag mixed cementitious materials. Chemosphere 138:247–252

    Article  CAS  Google Scholar 

  • Mollah MYA, Tsai YN, Hess TR, Cocke DL (1999) An FTIR, SEM and EDS investigation of solidification/stabilization of chromium using Portland cement type V and type IP. J Hazard Mater 30:2273–2283

    Google Scholar 

  • Moulin I (1999) Speciation du plomb, du Cuivre, du zinc, du chrome (III) et (VI) dans les hydrates de ciment. Universite de Droit, d'Economie et des Sciences, Faculté des Sciences et Techniques de Saint Jerome (These), Marseille

    Google Scholar 

  • Ochs M, Lothenbach B, Giffaut E (2002) Uptake of oxo-anions by cements through solidsolution formation: experimental evidence and modeling. Radiochim Acta 90:639–646

    Article  CAS  Google Scholar 

  • Okeniyi JO, Omotosho OA, Ajayi OO, Loto CA (2014) Effect of potassium-chromate and sodium-nitrite on concrete steel-rebar degradation in Sulphate and saline media. Constr Build Mater 50:448–456

    Article  Google Scholar 

  • Omotoso OE, Ivey DG, Mikula R (1995) Characterization of chromium doped tricalcium silicate using SEM/EDS, XRD and FTIR. J Hazard Mater 42:87–102

    Article  CAS  Google Scholar 

  • Qijun YT, Nagataki S, Jinmei L, Saeki T, Hisada M (2005) The leachability of heavy metals in hardened fly ash cement and cement-solidified fly ash. Cem Concr Res 35:1056–1063

    Article  CAS  Google Scholar 

  • Rashid H, Takemura J, Farooqi AM (2011) Soil explorations and groundwater monitoring to evaluate subsurface contamination due to chromium in district Kasur. Pakistan J Environ Sci Eng 5:835–843

    CAS  Google Scholar 

  • Richard FC, Bourg ACM (1991) Aqueous geochemistry of chromium: a review. Wat Res 25:807–816

    Article  CAS  Google Scholar 

  • Roessler JG, Townsend TG, Ferraro CC (2015) Use of leaching tests to quantify trace element release from waste to energy bottom ash amended pavements. J Hazard Mater 300:830–837

    Article  CAS  Google Scholar 

  • Rosales J, Cabrera M, Agrela F (2017) Effect of stainless steel slag waste as a replacement for cement in mortars. Mechanical and statistical study. Constr Build Mater 142:444–458

    Article  CAS  Google Scholar 

  • Roskovic R, Oslakovic IS, Radic J, Serdar M (2011) Effects of chromium (VI) reducing agents in cement on corrosion of reinforcing steel. Cem Concr Comp 33:1020–1025

    Article  CAS  Google Scholar 

  • Saha R, Nandi R, Saha B (2011) Sources and toxicity of hexavalent chromium. J Coord Chem 64:1782–1806

    Article  CAS  Google Scholar 

  • Sharma P, Bihari V, Agarwal SK, Kesavachandran ChN, Pangtey BS, Mathur N, Singh KP, Srivastava M, Goe SK (2012) Groundwater contaminated with hexavalent chromium (Cr (VI): a health survey and clinical examination of community inhabitants (Kanpur, India). PLoS One 7:3–9

  • Shih AH, Chang JE, Lu HC, Chiang LC (2005) Reuse of heavy metal-containing sludge in cement production. Cem Concr Res 35:2110–2115

    Article  CAS  Google Scholar 

  • Singh TS, Pant KK (2006) Solidification/stabilization of arsenic containing solid wastes using Portland cement, fly ash and polymeric materials. J Hazard Mater 131:29–36

    Article  CAS  Google Scholar 

  • Sinyoung S, Songsiriritthigul P, Asavapisit S, Kajitvichyanukul P (2011) Chromium behavior during cement-production processes: a clinkerization, hydration, and leaching study. J Hazard Mater 191:296–305

    Article  CAS  Google Scholar 

  • Soil Quality Decree (2007) Staatscourant The Netherlands Nr 247:67–90

  • Stephan D, Maleki H, Knöfel D, Eber B, Härdtl R (1999) Influence of Cr, Ni, and Zn on the properties of pure clinker phases: part II. C3A and C4AF. Cem Concr Res 29:651–657

    Article  CAS  Google Scholar 

  • Tantawy MA, El-Roudi AM, Salem AA (2012) Immobilization of Cr(VI) in bagasse ash blended cement pastes. Constr Build Mater 30:218–223

    Article  Google Scholar 

  • Torras J, Buj I, Rovira M, de Pablo J (2011) Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements. J Hazard Mater 186:1954–1960

    Article  CAS  Google Scholar 

  • Trezza MA, Ferraiuelo MF (2003) Hydration study of limestone blended cement in the presence of hazardous wastes containing Cr(VI). Cem Concr Res 33:1039–1045

    Article  CAS  Google Scholar 

  • Tripathi B, Chaudhary S (2015) Performance based evaluation of ISF slag as a substitute of natural sand in concrete. J Clean Prod 112:672–683

    Article  CAS  Google Scholar 

  • USEPA method 1311 (1992) toxicity characteristic leaching procedure

  • Van der Sloot H.A, Van Zomeren A, Meeussen JCL, Hoede D, Rietra RPJJ, Stenger R, Lang Th, Schneider M, Spanka G, Stoltenberg-Hansson E, Lerat A, Dath P (2011) Environmental criteria for cement based products ECRICEM phase I: ordinary Portland cement phase II: blended cements and methodology for impact assessment. ECN-E--11-020

  • Varitis S, Kavouras P, Pavlidou E, Pantazopoulou E, Vourlias G, Chrissafis K, Zouboulis AI, Karakostas T, Komninou P (2017) Vitrification of incinerated tannery sludge in silicate matrices for chromium stabilization. Waste Manag 59:237–246

    Article  CAS  Google Scholar 

  • Wang S, Vipulanandan C (2000) Solidification/stabilization of Cr (VI) with cement Leachability and XRD analyses. Cem Concr Res 30:385–389

    Article  CAS  Google Scholar 

  • Zak R, Deja J (2015) Spectroscopy study of Zn, cd, Pb and Cr ions immobilization on C–S–H phase. Spectrochim Acta A 134:614–620

    Article  CAS  Google Scholar 

  • Zhang M, Yang C, Zhao M, Yang K, Shen R, Zheng Y (2017) Immobilization potential of Cr (VI) in sodium hydroxide activated slag pastes. J Hazard Mater 321:281–289

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the MPRC for their help to coduct some of the tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nematollah Bakhshi.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshi, N., Sarrafi, A. & Ramezanianpour, A.A. Immobilization of hexavalent chromium in cement mortar: leaching properties and microstructures. Environ Sci Pollut Res 26, 20829–20838 (2019). https://doi.org/10.1007/s11356-019-05301-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05301-z

Keywords

Navigation