Skip to main content
Log in

Use of nicotinamide decorated polymeric cryogels as heavy metal sweeper

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cryogels are synthetic polymers used in adsorption experiments in recent years. Because of their macropores, they provide an excellent advantage as an adsorbent in continuous and batch adsorption processes. In this study, nicotinamide (NAA) decorated poly(2-hydroxyethyl methacrylate-glycidyl methacrylate), poly(HEMA-GMA), cryogels were synthesized. Heavy metal adsorption was carried out in wastewater obtained from six different sources in Çorum, Turkey. This study has a novelty regarding the application, i.e., it is the first time to use a polymeric adsorbent for the removal of 15 different heavy metal at the same time without any competition (despite the fact that there is a competition between the metals, the only thing is the removal regarding the purpose the study) as a heavy metal sweeper. Inductively coupled plasma-mass spectrometer (ICP-MS) was used for the determination of the initial amount of heavy metal in the wastewater samples. Adsorption studies were performed using poly(HEMA-GMA) and NAA-decorated poly(HEMA-GMA) cryogel to see the effect of NAA decoration. Higher adsorption capacity was achieved using NAA decorated poly(HEMA-GMA) cryogel. The total heavy metal amount adsorbed from six different sources was about 686 and 387 mg for poly(HEMA-GMA)-NAA and poly(HEMA-GMA) cryogels, respectively. The highest heavy metal adsorption value was obtained in the wastewater from source 2, and Zn (II) was the heavy metal adsorbed most for both cryogel. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermal, surface area, elemental, and computerized microtomography (μCT) analyses were used for the characterization of cryogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andac M, Plieva F, Denizli A, Galaev IY, Mattiasson B (2008) Poly (hydroxyethyl methacrylate)-based macroporous hydrogels with disulfide cross-linker. Macromol Chem Phys 209:577–584

    Article  CAS  Google Scholar 

  • Arvidsson P, Plieva FM, Savina IN, Lozinsky VI, Fexby S, Bülow L, Yu. Galaev I, Mattiasson B (2002) Chromatography of microbial cells using continuous supermacroporous affinity and ion-exchange columns. J Chromatogr A 977:27–38

    Article  CAS  Google Scholar 

  • Bhunia B, Prasad Uday US, Oinam G, Mondal A, Bandyopadhyay TK, Tiwari ON (2018) Characterization, genetic regulation and production of cyanobacterial exopolysaccharides and its applicability for heavy metal removal. Carbohyd Polym 179:228–243. https://doi.org/10.1016/j.carbpol.2017.09.091

    Article  CAS  Google Scholar 

  • Çimen D, Yılmaz F, Perçin I, Türkmen D, Denizli A (2015) Dye affinity cryogels for plasmid DNA purification. Mater Sci Eng C 56:318–324

    Article  CAS  Google Scholar 

  • Dai Z, Proni G, Mancheno D, Karimi S, Berova N, Canary JW (2004) Detection of zinc ions by differential circularly polarized fluorescence excitation. J Am Chem Soc 126:11760–11761

    Article  CAS  Google Scholar 

  • Dispinar T, Van Camp W, De Cock LJ, De Geest BG, Du Prez FE (2012) Redox-responsive degradable PEG Cryogels as potential cell scaffolds in tissue engineering. Macromol Biosci 12:383–394

    Article  CAS  Google Scholar 

  • Erdem A, Ngwabebhoh FA, Yildiz U (2017) Novel macroporous cryogels with enhanced adsorption capability for the removal of cu (II) ions from aqueous phase: modelling, kinetics and recovery studies. J Environ Chemical Eng 5:1269–1280

    Article  CAS  Google Scholar 

  • Erol K (2017) The adsorption of Calmoduline via nicotinamide immobilized poly (HEMA-GMA) Cryogels. Journal of the Turkish Chemical Society, Section A: Chemistry 4:133–148

    Article  CAS  Google Scholar 

  • Erol K, Uzunoglu A, Köse K, Sarıca B, Avcı E, Köse DA (2018) Synthesis and characterization of ag+−decorated poly (glycidyl methacrylate) microparticle design for the adsorption of nucleic acids. J Chromatogr B 1081:1–7

    Article  CAS  Google Scholar 

  • Ertürk G, Mattiasson B (2014) Cryogels-versatile tools in bioseparation. J Chromatogr A 1357:24–35

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  • Gadd GM, Griffiths AJ (1977) Microorganisms and heavy metal toxicity. Microb Ecol 4:303–317

    Article  CAS  Google Scholar 

  • Gao F-X, Zhao X-L, He X-W, Li W-Y, Zhang Y-K (2013) A pH and temperature dual-responsive macroporous molecularly imprinted cryogel for enhanced recognition capability towards ovalbumin. Anal Methods-Uk 5:6700–6708

  • Gunatilake S (2015) Methods of removing heavy metals from industrial wastewater Methods 1

  • Gupta V et al (2016) Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review. Crit Rev Environ Sci Technol 46:93–118

    Article  CAS  Google Scholar 

  • Gururajan K, Belur PD (2018) Screening and selection of indigenous metal tolerant fungal isolates for heavy metal removal. Environ Technol Innovation 9:91–99. https://doi.org/10.1016/j.eti.2017.11.001

    Article  Google Scholar 

  • Hathcock J (2013) Niacin: nicotinic acid, nicotinamide, and inositol hexanicotinate vitamin and mineral safety, 3rd edn. Council for Responsible Nutrition, Washington, DC, p 66–79

  • Hussien HM, Abd-Elmegied A, Ghareeb DA, Hafez HS, Ahmed HEA, El-moneam NA (2018) Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer's-like disease in rats. Food Chem Toxicol 111:432–444. https://doi.org/10.1016/j.fct.2017.11.025

    Article  CAS  Google Scholar 

  • Hwang Y, Zhang C, Varghese S (2010) Poly (ethylene glycol) cryogels as potential cell scaffolds: effect of polymerization conditions on cryogel microstructure and properties. J Mater Chem 20:345–351

    Article  CAS  Google Scholar 

  • Jalilzadeh M, Şenel S (2016) Removal of cu (II) ions from water by ion-imprinted magnetic and non-magnetic cryogels: a comparison of their selective cu (II) removal performances. J Water Process Engineering 13:143–152

    Article  Google Scholar 

  • Jespersen GR, Nielsen AL, Matthiesen F, Andersen HS, Kirsebom H (2013) Dual application of cryogel as solid support in peptide synthesis and subsequent protein-capture. J Appl Polym Sci 130:4383–4391

    CAS  Google Scholar 

  • Jordão C, Pereira J, Brune W, Pereira J, Braathen P (1996) Heavy metal dispersion from industrial wastes in the Vale do Aço, Minas Gerais, Brazil. Environ Technol 17:489–500

    Google Scholar 

  • Kahvecioğlu Ö, Kartal G, Güven A, Timur S (2010) Metallerin Çevresel Etkileri-1. İTÜ Metalürji ve Malzeme Mühendisliği Bölümü

  • Knip M et al (2000) Safety of high-dose nicotinamide: a review. Diabetologia 43:1337–1345

    Article  CAS  Google Scholar 

  • Kobielska PA, Howarth AJ, Farha OK, Nayak S (2018) Metal–organic frameworks for heavy metal removal from water. Coordin Chem Rev 358:92–107. https://doi.org/10.1016/j.ccr.2017.12.010

    Article  CAS  Google Scholar 

  • Köse DA, Akkurt F, Şahin O, Büyükgüngör O (2014) Synthesis and structural characterization of a binuclear mixed-ligand (salicylate and N, N-diethylnicotinamide) nickel (II) complex, its magnetic properties.[Ni2 (μ-Sal) 4 (Dena) 2] H2O. J Chin Chem Soc 61:1326–1332

    Article  CAS  Google Scholar 

  • Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445–451

    Article  CAS  Google Scholar 

  • Ma J, Qin G, Zhang Y, Sun J, Wang S, Jiang L (2018) Heavy metal removal from aqueous solutions by calcium silicate powder from waste coal fly-ash. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.02.115

  • MacKay D, Hathcock J, Guarneri E (2012) Niacin: chemical forms, bioavailability, and health effects. Nutr Rev 70:357–366

    Article  Google Scholar 

  • Mattiasson B, Kumar A, Galeaev IY (2009) Macroporous polymers: production properties and biotechnological/biomedical applications. CRC Press,

  • Mattiussi A, Blais D (1992) Niacin versus niacinamide CMAJ. Can Med Assoc J 147:990

    CAS  Google Scholar 

  • Mohan SV, Chiranjeevi P, Shikha D, Kumar AN (2018) Waste derived bioeconomy in India: a perspective. New Biotechnol 40:60–69. https://doi.org/10.1016/j.nbt.2017.06.006

  • Qiu H, Liang C, Yu J, Zhang Q, Song M, Chen F (2017) Preferable phosphate sequestration by nano-La(III) (hydr)oxides modified wheat straw with excellent properties in regeneration. Chem Eng J 315:345–354. https://doi.org/10.1016/j.cej.2017.01.043

    Article  CAS  Google Scholar 

  • Rehan M, Gardy J, Demirbas A, Rashid U, Budzianowski W, Pant D, Nizami A (2018) Waste to biodiesel: a preliminary assessment for Saudi Arabia. Bioresource Technol 250:17–25

  • Reichelt S et al (2014) Biocompatible polysaccharide-based cryogels. Mater Sci Eng C 35:164–170

    Article  CAS  Google Scholar 

  • Rether A (2002) Entwicklung und Charaktersierung wasserlöslicher Benzoylthioharnstofffunktionalisierter Polymere zur selektiven Abtrennung von Schwermetallionen aus Abwässern und Prozesslösungen. Technische Universität München

  • Rolfe HM (2014) A review of nicotinamide: treatment of skin diseases and potential side effects. J Cosmet Dermatol 13:324–328

    Article  Google Scholar 

  • Sağlam N, Cihangir N (1995) Ağır metallerin biyolojik süreçlerle biyosorbisyonu çalışmaları Hacettepe Üniversitesi Eğitim Fakültesi Dergisi 11

  • Şahin ZS, Şahin O, Dağlı Ö, Köse DA (2016) Diphenic acid/nicotinamide complexes of co II, cu II and Zn II. Synthesis and structural investigation. Polyhedron 117:214–223

    Article  CAS  Google Scholar 

  • Tamahkar E, Bakhshpour M, Andaç M, Denizli A (2017) Ion imprinted cryogels for selective removal of Ni (II) ions from aqueous solutions. Sep Purif Technol 179:36–44

    Article  CAS  Google Scholar 

  • Tang J, He J, Xin X, Hu H, Liu T (2018) Biosurfactants enhanced heavy metals removal from sludge in the electrokinetic treatment. Chem Eng J 334:2579–2592. https://doi.org/10.1016/j.cej.2017.12.010

    Article  CAS  Google Scholar 

  • Tekin K, Uzun L, Şahin ÇA, Bektaş S, Denizli A (2011) Preparation and characterization of composite cryogels containing imidazole group and use in heavy metal removal. React Funct Polym 71:985–993

    Article  CAS  Google Scholar 

  • Ting Y, Prince I, Lawson F (1991) Uptake of cadmium and zinc by the alga Chlorella vulgaris: II. Multi-ion situation. Biotechnol Bioeng 37:445–455

    Article  CAS  Google Scholar 

  • Tripathi A, Sami H, Jain SR, Viloria-Cols M, Zhuravleva N, Nilsson G, Jungvid H, Kumar A (2010) Improved bio-catalytic conversion by novel immobilization process using cryogel beads to increase solvent production. Enzym Microb Technol 47:44–51

  • Türkmen D, Yılmaz E, Öztürk N, Akgöl S, Denizli A (2009) Poly (hydroxyethyl methacrylate) nanobeads containing imidazole groups for removal of cu (II) ions. Mater Sci Eng C 29:2072–2078

    Article  CAS  Google Scholar 

  • Varadwaj GBB, Oyetade OA, Rana S, Martincigh BS, Jonnalagadda SB, Nyamori VO (2017) Facile synthesis of three-dimensional mg–Al layered double hydroxide/partially reduced graphene oxide nanocomposites for the effective removal of Pb2+ from aqueous solution. Acs Appl Mater Inter 9:17290–17305

    Article  CAS  Google Scholar 

  • Wan X, Zhan Y, Long Z, Zeng G, He Y (2017) Core@ double-shell structured magnetic halloysite nanotube nano-hybrid as efficient recyclable adsorbent for methylene blue removal. Chem Eng J 330:491–504

    Article  CAS  Google Scholar 

  • Wang H, Yuan X, Wu Y, Chen X, Leng L, Wang H, Li H, Zeng G (2015) Facile synthesis of polypyrrole decorated reduced graphene oxide–Fe3O4 magnetic composites and its application for the Cr (VI) removal. Chem Eng J 262:597–606

  • Wang B, Xia J, Mei L, Wang L, Zhang Q (2017) Highly efficient and rapid lead(II) scavenging by the natural artemia cyst shell with unique three-dimensional porous structure and strong sorption affinity ACS Sustain Chem Eng 6:1343–1351

  • Wong P, Kwok S (1992) Accumulation of nickel ion (Ni2+) by immobilized cells ofEnterobacter species. Biotechnol Lett 14:629–634

    Article  CAS  Google Scholar 

  • Yao K, Yun J, Shen S, Chen F (2007) In-situ graft-polymerization preparation of cation-exchange supermacroporous cryogel with sulfo groups in glass columns. J Chromatogr A 1157:246–251

    Article  CAS  Google Scholar 

  • Zhan Y, Wan X, He S, He Y (2018) Sulfonated poly (arylene ether nitrile)/polypyrrole core/shell nanofibrous mat: an efficient absorbent for the removal of hexavalent chromium from aqueous solution. J Chem Technol Biotechnol 93:1432–1442

    Article  CAS  Google Scholar 

  • Zhang Q, Li Y, Phanlavong P, Wang Z, Jiao T, Qiu H, Peng Q (2017a) Highly efficient and rapid fluoride scavenger using an acid/base tolerant zirconium phosphate nanoflake: behavior and mechanism. J Clean Prod 161:317–326. https://doi.org/10.1016/j.jclepro.2017.05.120

    Article  CAS  Google Scholar 

  • Zhang Q, Li Y, Yang Q, Chen H, Chen X, Jiao T, Peng Q (2018) Distinguished Cr (VI) capture with rapid and superior capability using polydopamine microsphere: behavior and mechanism. J Hazard Mater 342:732–740

    Article  CAS  Google Scholar 

  • Zhang Q, Yang Q, Phanlavong P, Li Y, Wang Z, Jiao T, Peng Q (2017b) Highly efficient lead(II) sequestration using size-controllable Polydopamine microspheres with superior application capability and rapid capture. ACS Sustain Chem Eng 5:4161–4170. https://doi.org/10.1021/acssuschemeng.7b00129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors of this research, which was supported by the Hittite University Scientific Research Projects Coordination Unit with a grant number as ODMYO.19004.16.001, was hugely indebted to the Hitit University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazım Köse.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgin, E., Erol, K., Köse, K. et al. Use of nicotinamide decorated polymeric cryogels as heavy metal sweeper. Environ Sci Pollut Res 25, 27614–27627 (2018). https://doi.org/10.1007/s11356-018-2784-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2784-6

Keywords

Navigation