Skip to main content
Log in

In situ pilot test for bioremediation of energetic compound-contaminated soil at a former military demolition range site

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bioremediation was performed in situ at a former military range site to assess the performance of native bacteria in degrading hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitrotoluene (2,4-DNT). The fate of these pollutants in soil and soil pore water was investigated as influenced by waste glycerol amendment to the soil. Following waste glycerol application, there was an accumulation of organic carbon that promoted microbial activity, converting organic carbon into acetate and propionate, which are intermediate compounds in anaerobic processes. This augmentation of anaerobic activity strongly correlated to a noticeable reduction in RDX concentrations in the amended soil. Changes in concentrations of RDX in pore water were similar to those observed in the soil suggesting that RDX leaching from the soil matrix, and treatment with waste glycerol, contributed to the enhanced removal of RDX from the water and soil. This was not the case with 2,4-DNT, which was neither found in pore water nor affected by the waste glycerol treatment. Results from saturated conditions and Synthetic Precipitation Leaching Procedure testing, to investigate the environmental fate of 2,4-DNT, indicated that 2,4-DNT found on site was relatively inert and was likely to remain in its current state on the site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achtnich C, Sieglen U, Knackmuss HJ, Lenke H (1999) Irreversible binding of biologically reduced 2,4,6-trinitrotoluene to soil. Environ Toxicol Chem 18:2416–2423

    Article  CAS  Google Scholar 

  • Achtnich C, Lenke H (2001) Stability of immobilized 2,4,6-trinitrotoluene metabolites in soil under long-term leaching conditions. Environ Toxicol Chem 20:280–283

    Article  CAS  Google Scholar 

  • Adrian NR, Arnett CM, Hickey RF (2003) Stimulating the anaerobic biodegradation of explosives by the addition of hydrogen or electron donors that produce hydrogen. Water Res 37:3499–3507

    Article  CAS  Google Scholar 

  • Adrian NR, Arnett CM (2006) Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) serves as a carbon and energy source for a mixed culture under anaerobic conditions. Curr Microbiol 53:129–134

    Article  CAS  Google Scholar 

  • Adrian NR, Arnett CM (2007) Anaerobic biotransformation of explosives in aquifer slurries amended with ethanol and propylene glycol. Chemosphere 66:1849–1856

    Article  CAS  Google Scholar 

  • Behrooz M, Borden RC (2012) Waste glycerol addition to reduce AMD production in unsaturated mine tailings. Mine Water Environ 31:161–171

    Article  CAS  Google Scholar 

  • Bhatt M, Zhao JS, Halasz A, Hawari J (2006) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by novel fungi isolated from unexploded ordnance contaminated marine sediment. J Ind Microbiol Biotechnol 33:850–858

    Article  CAS  Google Scholar 

  • Boopathy R, Widrig DL, Manning JF (1997) In situ bioremediation of explosives-contaminated soil: a soil column study. Bioresour Technol 59:169–176

    Article  CAS  Google Scholar 

  • Boopathy R, Manning J, Kulpa CF (1998) Biotransformation of explosives by anaerobic consortia in liquid culture and in soil slurry. Int Biodeterior Biodegrad 41:67–74

    Article  CAS  Google Scholar 

  • Boopathy R (2001) Enhanced biodegradation of cyclotetramethylenetetranitramine (HMX) under mixed electron-acceptor condition. Bioresour Technol 76:241–244

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH (1995) Factors affecting microbial 2,4,6-trinitrotoluene mineralization in contaminated soil. Environ Sci Technol 29:802–806

    Article  CAS  Google Scholar 

  • Cheng J, Suidan MT, Venosa AD (1998) Anaerobic biotransformation of 2,4-dinitrotoluene with ethanol, methanol, acetic acid and hydrogen as primary substrates. Water Res 32:2921–2930

    Article  CAS  Google Scholar 

  • Chu A, Mavinic DS, Kelly HG, Ramey W (1994) Volatile fatty acid production in thermophilic aerobic digestion of sludge. Water Res 28:1513–1522

    Article  CAS  Google Scholar 

  • Clausen J, Robb J, Curry D, Korte N (2004) A case study of contaminants on military ranges: Camp Edwards, Massachusetts, USA. Environ Pollut 129:13–21

    Article  CAS  Google Scholar 

  • Colucci JA, Borrero EE, Alape F (2005) Biodiesel from an alkaline transesterification reaction of soybean oil using ultrasonic mixing. J Am Oil Chem Soc 82:525–530

    Article  CAS  Google Scholar 

  • Crockett AB, Craig HD, Jenkins TF, Sisk WE (1998) Overview of on-site analytical methods for explosives in soil. U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory (CRREL), Hanover

    Book  Google Scholar 

  • Dontsova KM, Yost SL, Šimunek J, Pennington JC, Williford CW (2006) Dissolution and transport of TNT, RDX, and composition B in saturated soil columns. J Environ Qual 35:2043–2054

    Article  CAS  Google Scholar 

  • Dontsova KM, Pennington JC, Hayes C, Šimunek J, Williford CW (2009) Dissolution and transport of 2,4-DNT and 2,6-DNT from M1 propellant in soil. Chemosphere 77:597–603

    Article  CAS  Google Scholar 

  • Fahrenfeld N, Zoeckler J, Widdowson MA, Pruden A (2013) Effect of biostimulants on 2,4,6-trinitrotoluene (TNT) degradation and bacterial community composition in contaminated aquifer sediment enrichments. Biodegradation 24:179–190

    Article  CAS  Google Scholar 

  • Fuller ME, Manning JF Jr (2004) Microbiological changes during bioremediation of explosives-contaminated soils in laboratory and pilot-scale bioslurry reactors. Bioresour Technol 91:123–133

    Article  CAS  Google Scholar 

  • Funk SB, Roberts DJ, Crawford DL, Crawford RL (1993) Initial-phase optimization for bioremediation of munition compound-contaminated soils. Appl Environ Microbiol 59:2171–2177

    CAS  Google Scholar 

  • Gerlach R, Steiof M, Zhang C, Hughes JB (1999) Low aqueous solubility electron donors for the reduction of nitroaromatics in anaerobic sediments. J Contam Hydrol 36:91–104

    Article  CAS  Google Scholar 

  • Gnanapragasam G, Senthilkumar M, Arutchelvan V, Velayutham T, Nagarajan S (2011) Bio-kinetic analysis on treatment of textile dye wastewater using anaerobic batch reactor. Bioresour Technol 102:627–632

    Article  CAS  Google Scholar 

  • Hawari J, Halasz A (2000) Biodegradation of explosives. In: Bitton G (ed) Encyclopedia of Environmental Microbiology. Wiley, New York, pp 1979–1993

    Google Scholar 

  • Hudcova T, Halecky M, Kozliak E, Stiborova M, Paca J (2011) Aerobic degradation of 2,4-dinitrotoluene by individual bacterial strains and defined mixed population in submerged cultures. J Hazard Mater 192:605–613

    Article  CAS  Google Scholar 

  • Hughes JB, Wang CY, Zhang C (1999) Anaerobic biotransformation of 2,4-dinitrotoluene and 2,6-dinitrotoluene by Clostridium acetobutylicum: a pathway through dihydroxylamino intermediates. Environ Sci Technol 33:1065–1070

    Article  CAS  Google Scholar 

  • Hundal LS, Shea PJ, Comfort SD, Powers WL, Singh J (1997) Long-term TNT sorption and bound residue formation in soil. J Environ Qual 26:896–904

    Article  CAS  Google Scholar 

  • Innemanová P, Velebová R, Filipová A, Čvančarová M, Pokorný P, Němeček J, Cajthaml T (2015) Anaerobic in situ biodegradation of TNT using whey as an electron donor: a case study. New Biotechnol 32:701–709

    Article  CAS  Google Scholar 

  • Jenkins TF, Grant CL, Walsh ME, Thorne PG, Thiboutot S, Ampleman G, Ranney TA (1999) Coping with spatial heterogeneity effects on sampling and analysis at an HMX-contaminated antitank firing range. Field Anal Chem Technol 3:19–28

    Article  CAS  Google Scholar 

  • Jugnia L-B, Beaumier D, Holdner J, Delisle S, Greer CW, Hendry M (2017) Enhancing the potential for in situ bioremediation of RDX contaminated soil from a former military demolition range. Soil Sediment Contam Int J 26(7–8):722–735

    Article  CAS  Google Scholar 

  • Kanekar SP, Kanekar PP, Sarnaik SS, Gujrathi NP, Shede PN, Kedargol MR, Reardon KF (2009) Bioremediation of nitroexplosive wastewater by an yeast isolate Pichia sydowiorum MCM Y-3 in fixed film bioreactor. J Ind Microbiol Biotechnol 36:253–260

    Article  CAS  Google Scholar 

  • Lamichhane KM, Babcock RW Jr, Turnbull SJ, Schenck S (2012) Molasses enhanced phyto and bioremediation treatability study of explosives contaminated Hawaiian soils. J Hazard Mater 243:334–339

    Article  CAS  Google Scholar 

  • Lee D-J, Lee S-Y, Bae J-S, Kang J-G, Kim K-H, Rhee S-S, Park J-H, Cho J-S, Chung J, Seo D-C (2015) Effect of volatile fatty acid concentration on anaerobic degradation rate from field anaerobic digestion facilities treating food waste leachate in South Korea. J Chem 2015:1–9

    Google Scholar 

  • Lendenmann U, Spain JC, Smets BF (1998) Simultaneous biodegradation of 2,4-dinitrotoluene and 2,6-dinitrotoluene in an aerobic fluidized-bed biofilm reactor. Environ Sci Technol 32:82–87

    Article  CAS  Google Scholar 

  • Lenke H, Warrelmann J, Daun G, Hund K, Sieglen U, Walter U, Knackmuss HJ (1998) Biological treatment of TNT-contaminated soil. 2. Biologically induced immobilization of the contaminants and full-scale application. Environ Sci Technol 32:1964–1971

    Article  CAS  Google Scholar 

  • Lewis TA, Newcombe DA, Crawford RL (2004) Bioremediation of soils contaminated with explosives. J Environ Manag 70:291–307

    Article  Google Scholar 

  • Lynch JC, Brannon JM, Delfino JJ (2002) Effects of component interactions on the aqueous solubilities and dissolution rates of the explosive formulations octol, composition B, and LX-14. J Chem Eng Data 47:542–549

    Article  CAS  Google Scholar 

  • Mamma D, Kalogeris E, Papadopoulos N, Hatzinikolaou DG, Christrakopoulos P, Kekos D (2004) Biodegradation of phenol by acclimatized Pseudomonas putida cells using glucose as an added growth substrate. J Environ Sci Health A Tox Hazard Subst Environ Eng 39:2093–2104

    Article  CAS  Google Scholar 

  • McCormick NG, Cornell JH, Kaplan AM (1981) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Appl Environ Microbiol 42:817–823

    CAS  Google Scholar 

  • Meyers SK, Deng S, Basta NT, Clarkson WW, Wilber GG (2007) Long-term explosive contamination in soil: effects on soil microbial community and bioremediation. Soil Sediment Contam 16:61–77

    Article  CAS  Google Scholar 

  • Michalsen MM, Weiss R, King A, Gent D, Medina VF, Istok JD (2013) Push-pull tests for estimating rdx and tnt degradation rates in groundwater. Ground Water Monit Remidiat 33:61–68

    Article  CAS  Google Scholar 

  • NRC (2010) Detailed site characterization at the demolition range—CFB Petawawa, report fiscal year 2009–2010. National Research Council, Biotechnology Research Institute

    Google Scholar 

  • Oh BT, Just CL, Alvarez PJJ (2001) Hexahydro-1,3,5-trinitro-1,3,5-triazine mineralization by zerovalent iron and mixed anaerobic cultures. Environ Sci Technol 35:4341–4346

    Article  CAS  Google Scholar 

  • Paca J, Halecky M, Barta J, Bajpai R (2009) Aerobic biodegradation of 2,4-DNT and 2,6-DNT: performance characteristics and biofilm composition changes in continuous packed-bed bioreactors. J Hazard Mater 163:848–854

    Article  CAS  Google Scholar 

  • Payne ZM, Lamichhane KM, Babcock RW Jr, Turnbull SJ (2013) Pilot-scale in situ bioremediation of HMX and RDX in soil pore water in Hawaii. Environ Sci Processes Impacts 15:2023–2029

    Article  CAS  Google Scholar 

  • Pennington JC, Brannon JM (2002) Environmental fate of explosives. Thermochim Acta 384:163–172

    Article  CAS  Google Scholar 

  • Phelan JM, Barnett JL (2001) Solubility of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene in water. J Chem Eng Data 46:375–376

    Article  CAS  Google Scholar 

  • Pichtel J (2012) Distribution and fate of military explosives and propellants in soil: a review. Appl Environ Soil Sci 2012:1–33

    Article  CAS  Google Scholar 

  • Radtke CW, Gianotto D, Roberto FF (2002) Effects of particulate explosives on estimating contamination at a historical explosives testing area. Chemosphere 46:3–9

    Article  CAS  Google Scholar 

  • Ringelberg D, Richmond M, Foley K, Reynolds C (2008) Utility of lipid biomarkers in support of bioremediation efforts at army sites. J Microbiol Methods 74:17–25

    Article  CAS  Google Scholar 

  • Ringelberg DB, Reynolds CM, Walsh ME, Jenkins TF (2003) RDX loss in a surface soil under saturated and well drained conditions. J Environ Qual 32:1244–1249

    Article  CAS  Google Scholar 

  • Rodgers JD, Bunce NJ (2001) Treatment methods for the remediation of nitroaromatic explosives. Water Res 35:2101–2111

    Article  CAS  Google Scholar 

  • Ronen Z, Yanovich Y, Goldin R, Adar E (2008) Metabolism of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a contaminated vadose zone. Chemosphere 73:1492–1498

    Article  CAS  Google Scholar 

  • Speitel GE Jr, Engels TL, McKinney DC (2010) Biodegradation of RDX in unsaturated soil. Biorem J 5:1–11

    Article  Google Scholar 

  • Stevenson FJ, Fitch A (1986) Chemistry of complexation of metal ions with soil solution organics. In: Huang PM, Schnitzer M (eds) Interactions of Soil Minerals with Natural Organics and Microbes. Soil Science Society of America, Madison, pp 29–58

    Google Scholar 

  • Tharakan JP, Gordon JA (1999) Cometabolic biotransformation of trinitrotoluene (TNT) supported by aromatic and non-aromatic cosubstrates. Chemosphere 38:1323–1330

    Article  Google Scholar 

  • USEPA (1994) Toxicity characteristic leaching procedure, test methods for evaluating solid waste, physical/chemical methods U.S. Environmental Protection Agency, Office of Solid Waste, U.S. Government Printing Office, Washington

    Google Scholar 

  • USEPA (1997) Nitroaromatics and nitramines by high performance liquid chromatography (HPLC), test methods for evaluating solid waste; SW-846 update III; part 4: 1 (B). Office of Solid Waste, Washington, DC

    Google Scholar 

  • Wang CC, Lee CM, Lu CJ, Chuang MS, Huang CZ (2000) Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere 41:1873–1879

    Article  CAS  Google Scholar 

  • Zhang C, Hughes JB, Nishino SF, Spain JC (2000) Slurry-phase biological treatment of 2,4-dinitrotoluene and 2,6-dinitrotoluene: role of bioaugmentation and effects of high dinitrotoluene concentrations. Environ Sci Technol 34:2810–2816

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the four CDSB Environment Services of the Canadian Department of National Defense at Garrison Petawawa for funding of this work. We thank N. Kemka for assistance with field work, A. Halasz for technical support, and L. Paquet and A. Corriveau for the analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis B. Jugnia.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jugnia, L.B., Manno, D., Drouin, K. et al. In situ pilot test for bioremediation of energetic compound-contaminated soil at a former military demolition range site. Environ Sci Pollut Res 25, 19436–19445 (2018). https://doi.org/10.1007/s11356-018-2115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2115-y

Keywords

Navigation